Ecología térmica de la lagartija de lava de Santa Cruz (Microlophus indefatigabilis) de Gálapagos, Ecuador: implicaciones del fenómeno de El Niño

Autores/as

  • Natalia Fierro-Estrada Universidad Nacional Autónoma de México https://orcid.org/0000-0001-9261-2626
  • Diego M. Arenas-Moreno Universidad Nacional Autónoma de México
  • Rafael A. Lara-Reséndiz Instituto Tecnológico de Sonora
  • Francisco J. Muñoz-Nolasco Universidad Nacional Autónoma de México
  • Marco A. Altamirano-Benavides Universidad Iberoamericana del Ecuador
  • Fabiola J. Gandarilla-Aizpuro Universidad Nacional Autónoma de México
  • Raúl Gómez-Trejo Pérez Universidad Nacional Autónoma de México
  • Luis E. Lozano-Aguilar Universidad Nacional Autónoma de México
  • Rufino Santos-Bibiano Universidad Nacional Autónoma de México
  • Danny Rueda-Córdova Dirección del Parque Nacional Galápagos
  • Paola Buitrón-López Dirección del Parque Nacional Galápagos
  • Fausto R. Méndez-de la Cruz Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.22201/ib.20078706e.2022.93.3895

Palabras clave:

Termorregulación, Temperatura óptima, Desempeño locomotor, Amplitud térmica, Islas Galápagos, Cambio climático, Restricción térmica

Resumen

La temperatura es la principal variable ambiental de la que dependen las lagartijas para mantener sus procesos metabólicos, esta influencia el desempeño locomotor. Debido a esto, si la temperatura ambiental aumenta como consecuencia del cambio climático, los lacertilios podrían verse afectados fisiológica y ecológicamente. Evaluamos la eficiencia térmica y el desempeño locomotor de 3 poblaciones de Microlophus indefatigabilis. Registramos las temperaturas corporales, seleccionadas y críticas de los organismos, su desempeño locomotor y temperaturas operativas durante la temporada fría de 2017. Analizamos las temperaturas ambientales durante el fenómeno de El Niño de 1997 y 2015. Calculamos sus horas de restricción térmica durante el muestreo y ante los posibles aumentos en la temporada fría durante El Niño. Encontramos que las temperaturas corporales variaron significativamente entre poblaciones, pero conservan sus temperaturas seleccionadas, las cuales son cercanas a su temperatura óptima. Microlophus indefatigabilis tiende a termorregular y el extremo superior de su amplitud térmica está cercano a la temperatura crítica máxima. En años sin influencia de El Niño, la población con escasa cobertura vegetal presentó horas de restricción, pero con el aumento de las temperaturas ambientales, la especie podría incrementar sus horas de restricción, limitando sus horas de alimentación.

Biografía del autor/a

Natalia Fierro-Estrada, Universidad Nacional Autónoma de México

Estancia Posdoc en Laboratorio de Recursos Naturales, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, México.

Citas

Altamirano, M. A. (1996). Potential influences of biotic and abiotic factors on patterns of activity in Galapagos snakes: locomotory performance or prey abundance? University of New Mexico. Recuperado de: https://digitalrepository.unm.edu/biol_etds/147

Angilletta, M. J., Hill, T. y Robson, M. A. (2002). Is physiological performance optimized by thermoregulatory behavior?: a case study of the eastern fence lizard, Sceloporus undulatus. Journal of Thermal Biology, 27, 199–204. https://doi.org/10.1016/S0306-4565(01)00084-5

Angilletta, M. J., Niewiarowski, P. H. y Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology, 27, 249–268.

Bakken, G. S. (1992). Measurement and application of operative and standard operative temperatures in ecology. American Society of Zoologists, 32, 194–216. https://doi.org/10.1093/icb/32.2.194

Benavides, E., Baum, R., Snell, H. M., Snell, H. L. y Sites, J. W. (2009). Island biogeography of Galápagos lava lizards (Tropiduridae: Microlophus): species diversity and colonization of the archipelago. Evolution, 63, 1606–1626. https://doi.org/10.1111/j.1558-5646.2009.00617.x

Blouin-Demers, G. y Nadeau, P. (2005). The cost–benefit model of thermoregulation does not predict lizard thermoregulatory behavior. Ecology, 86, 560–566. https://doi.org/10.1890/04-1403

Blouin-Demers, G. y Weatherhead, P. J. (2001). Thermal ecology of Black Rat snakes (Elaphe obsoleta) in a thermally challenging environmen. Ecology, 82, 3025–3043. https://doi.org/https://doi.org/10.1890/0012-9658(2001)082[3025:TEOBRS]2.0.CO;2

Bogert, C. M. (1949). Thermoregulation in reptiles, a factor in evolution. Evolution, 3, 195–211. https://doi.org/10.2307/2405558

Bonino, M. F., Moreno-Azócar, D. L., Schulte, J. A., Abdala, C. S. y Cruz, F. B. (2015). Thermal sensitivity of cold climate lizards and the importance of distributional ranges. Zoology, 118, 281–290. https://doi.org/10.1016/j.zool.2015.03.001

Cabezas-Cartes, F., Fernández, J. B., Duran, F. y Kubisch, E. L. (2019). Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard. PeerJ, 7, 1–17. https://doi.org/10.7717/peerj.7437

Carpenter, C. C. (1970). Miscellaneous notes on Galapagos lava lizards (Tropidurus: Iguanidae). Herpetologica, 26, 377–386.

Castellini, M. A. (2009). Thermoregulation. In Encyclopedia of Marine Mammals. Second Ed. (pp. 1166–1171). Cambridge: Academic Press.

Catenazzi, A., Carrillo, J. y Donnelly, M. (2005). Seasonal and geographic eurythermy in a coastal Peruvian lizard. Copeia, 2005, 713–723.

Cowles, R. B. y Bogert, C. M. (1944). A preliminary study of the thermal requirements of desert reptiles. American Museum of Natural History, 83, 261–296.

Cowles, R. B. y Burleson, G. L. (1945). The sterilizing effect of high temperatue on the male germ-plasm of the Yuca night lizard, Xantusia vigilis. The American Naturalist, 79, 417–435.

Currie, R. J., Bennett, W. A. y Beitinger, T. L. (1998). Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environmental Biology of Fishes, 51, 187–200. https://doi.org/10.1023/A:1007447417546

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. et al. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proccedings of the National Academy of Sciences, 105, 6668–6672.

Du, W. G., Yan, S. J. y Ji, X. (2000). Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. Journal of Thermal Biology, 25, 197–202. https://doi.org/10.1016/S0306-4565(99)00022-4

Dubois, Y., Blouin-Demers, G., Shipley, B. y Thomas, D. (2009). Thermoregulation and habitat selection in wood turtles Glyptemys insculpta: chasing the sun slowly. Journal of Animal Ecology, 78, 1023–1032. https://doi.org/10.1111/j.1365-2656.2009.01555.x

Dzialowski, E. M. (2005). Use of operative temperature and standard operative temperature models in thermal biology. Journal of Thermal Biology, 30, 317–334. https://doi.org/10.1016/j.jtherbio.2005.01.005

Elzhov, T., Mullen, K., Spiess, A. y Bolker, B. (2016). Package “minpack. lm.” Https://Cran.R-Project.Org/Web/Packages/Minpack.Lm/Minpack.Lm.Pdf. Retrieved from https://cran.r-project.org/web/packages/minpack.lm/minpack.lm.pdf

Grigg, J. W. y Buckley, L. B. (2013). Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biology Letters, 16, 20121056. https://doi.org/10.1098/rsbl.2012.1056

Guillette, L. J. y Bearce, D. A. (1986). The reproductive and fat body cycles of the lizard, Sceloporus grammicus disparilis. Transactions of the Kansas Academy of Science (1903-), 89, 31–39. https://doi.org/10.2307/3627729

Hertz, P. E., Huey, R. B. y Stevenson, R. D. (1993). Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. The American Naturalist, 142, 796–818. https://doi.org/10.1086/285573

Huey, R. B. (1974a). Behavioral thermoregulation in lizards: importance of associated costs. Science, 184, 1001–1003. https://doi.org/10.1126/science.184.4140.1001

Huey, R. B. (1974b). Winter thermal ecology of the iguanid lizard Tropidurus peruvianus. Contributions in Science, 1974, 149–155.

Huey, R. B. (1982). Temperature, physiology, and the ecology of reptiles. In F. H. Gans, C. y Pough (Eds.), Biology of the Reptilia (Vol. 12, pp. 25–91). Academic Press, London. https://doi.org/10.1016/j.dsr.2014.07.003

Huey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Pérez, H. J. Á. et al. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 276, 1939–1948. https://doi.org/10.1098/rspb.2008.1957

Huey, R. B. y Slatkin, M. (1976). Cost and benefits of lizard thermoregulation. The Quarterly Review of Biology, 51, 363–384. https://doi.org/10.1086/409470

Kaufmann, J. S. y Bennett, A. F. (1989). The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiological Zoology, 62, 1047–1058. https://doi.org/10.1086/physzool.62.5.30156195

Kizirian, D., Trager, A., Donnelly, M. A. y Wright, J. W. (2004). Evolution of Galapagos island lava lizards (Iguania: Tropiduridae: Microlophus). Molecular Phylogenetics and Evolution, 32, 761–769. https://doi.org/10.1016/j.ympev.2004.04.004

Labra, A., Vidal, M. A., Solís, R. y Penna, M. (2008). Ecofisiología de anfibios y reptiles. In M. A. Vidal-Maldonado y A. Labra-Lillo (Eds.), Herpetología de Chile (pp. 483–516). Science Verlag. Chile.

Licht, P. (1974). Response of Anolis lizards to food supplementation in nature. Copeia, 1974, 215–221.

Logan, M. L., Huynh, R. K., Precious, R. A. y Calsbeek, R. G. (2013). The impact of climate change measured at relevant spatial scales: new hope for tropical lizards. Global Change Biology, 19, 3093–3102. https://doi.org/10.1111/gcb.12253

Lutterschmidt, W. I. y Hutchison, V. H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75, 1561–1574. https://doi.org/10.1139/z97-783

Méndez-de la Cruz, F. R., Guillette Jr, L. J. y Villagrán-Santa Cruz, M. (1993). Differential atresia of ovarian follicles and its effect on the clutch size of two populations of the viviparous lizard Sceloporus mucronatus. Functional Ecology, 7, 535–540. https://doi.org/10.2307/2390129

Méndez-Galeano, M. A., Paternina-Cruz, R. F. y Calderón-Espinosa, M. L. (2020). The highest kingdom of Anolis: thermal biology of the Andean lizard Anolis heterodermus (Squamata: Dactyloidae) over an elevational gradient in the Eastern Cordillera of Colombia. Journal of Thermal Biology, 89, 102498. https://doi.org/10.1016/j.jtherbio.2019.102498

Méndez-de la Cruz, F., Manríquez-Morán, N. L., Arenas-Ríos, E. e Ibargüengoytia, N. (2014). Male reproductive cycles in lizards. In S. Rheubert, Justin L. Siegel y Dustin S. Trauth (Eds.), Reproductive biology and phylogeny of lizards and tutara (pp. 302–339). Boca Raton: CRC Press.

Miles, D. B., Snell, H. L. y Snell, H. M. (2001). Intrapopulation variation in endurance of Galapagos lava lizards (Microlophus albemarlensis): evidence for an interaction between natural and sexual selection. Evolutionary Ecology Research, 3, 795–804.

Muñoz-Barriga, A. (2015). La contradicción del turismo en la conservación y el desarrollo en Galápagos - Ecuador. Estudios y Perspectivas en Turismo, 24, 399–413.

Neel, L. K. y McBrayer, L. D. (2018). Habitat management alters thermal opportunity. Functional Ecology, 32, 2029–2039. https://doi.org/10.1111/1365-2435.13123

O’Connor, M. P., Sieg, A. E. y Dunham, A. E. (2006). Linking physiological effects on activity and resource use to population level phenomena. Integrative and Comparative Biology, 46, 1093–1109. https://doi.org/10.1093/icb/icl031

Pontes-da-Silva, E., Magnusson, W. E., Sinervo, B., Caetano, G. H., Miles, D. B., Colli, G. R. et al. (2018). Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Journal of Thermal Biology, 73, 50–60. https://doi.org/10.1016/j.jtherbio.2018.01.013

R Development Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Retrieved from http://www.r-project.org

Rodríguez-Romero, F. y Méndez-de La Cruz, F. R. (2004). Reproductive arrest in Sceloporus mucronatus (Lacertilia: Phrynosomatidae) correlated with “El Niño Southern Oscillation.” Herpetological Review, 35, 121–123.

Rowe, J. W., Clark, D. L., Martin, C. E. y Valle, C. (2020). Diel and seasonal variations in the thermal biology of San Cristobal lava lizards (Microlophus bivittatus). Journal of Thermal Biology, 88, 1–9. https://doi.org/10.1016/j.jtherbio.2020.102518

Sinervo, B., Méndez-de la Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M. et al. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894–899. https://doi.org/10.1126/science.1184695

Snell, H. L., Jennings, R. D., Snell, H. M. y Harcourt, S. (1988). Intrapopulation variation in predator-avoidance performance of Galápagos lava lizards: the interaction of sexual and natural selection. Evolutionary Ecology, 2, 353–369. https://doi.org/10.1007/BF02207566

Snell, H. L., Snell, H. M., Stone, P. A., Altamirano, M. A., Mauchamp, A. y Aldáz, I. (1995). Proyecto de diversidad biológica de las Islas Galapagos, Volumen 1. Análisis de la flora. Fundación Charles Darwin Para Las Islas Galápagos, Ecuador. https://doi.org/10.1017/CBO9781107415324.004

Snell, H. y Rea, S. (1999). The 1997-98 El Niño in Galápagos: Can 34 years of data estimate 120 years of pattern? Noticias de Galápagos, 60, 11–20.

Stapley, J., García, M. y Andrews, R. M. (2015). Long-term data reveal a population decline of the tropical lizard Anolis apletophallus, and a negative affect of El Nino years on population growth rate. Plos One, 10, 1–14. https://doi.org/10.1371/journal.pone.0115450

Stebbins, R. C., Lowenstein, J. M. y Cohen, N. W. (1967). A field study of the lava lizard (Tropidurus albemarlensis) in the Galapagos islands. Ecological Society of America, 48, 839–851. https://doi.org/10.2307/1933742

Stott, P. (2016). How climate change affects extreme weather events. Science, 352, 1517–1518. https://doi.org/10.1126/science.aaf7271

Trueman, M. y d’Ozouville, N. (2010). Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Research, 67, 26–37.

Wikelski, M. y Thom, C. (2000). Marine iguanas shrink to survive El Niño. Nature, 403, 37–38. https://doi.org/10.1038/47396

Willmer, P., Stone, G. y Johnston, I. (2005). Environmental physiology of animals (Second Ed.). Oxford: Blackwell Publishing.

Yong, S. M. A. (2019). Estudio hidrológico de la cuenca Samán con base en el Fenómeno El Niño 2015 - 2016. Universidad de Piura. Lima, Perú.

Descargas

Publicado

2022-12-14

Número

Sección

ECOLOGÍA