Using microhabitat thermal heterogeneity to avoid lethal overheating: an empirical approximation in reproductive oviparous and viviparous lizards

Autores/as

  • Saúl López-Alcaide Instituto de Biologia, UNAM
  • Constantino González-Salazar
  • Rodrigo Macip-Ríos
  • Enrique Martínez-Meyer

DOI:

https://doi.org/10.1016/j.rmb.2017.07.005

Palabras clave:

Behavioral and nesting responses, Overheating, Temperature rise, Thermal heterogeneity, Reproductive mode

Resumen

Global warming has been recognized as a great threat for biodiversity. Particularly, it has been predicted that temperature raise could be lethal for ectothermic species in tropical regions, because their physiological and ecological traits are linked to specific ranges of environmental temperatures. However, some species may have been exposed for decades at temperatures exceeding their maximum thermal limit for embryonic development. Understanding how these organisms have faced historical extreme temperatures will allow us to improve inferences of species responses to the expected temperature increase. Here, we assessed whether 2 lizards, Sceloporus horridus (oviparous) and Sceloporus stejnegeri (viviparous) have been exposed to potential lethal thermal regimes where they inhabit, and whether behavioral use of microhabitat thermal heterogeneity has enabled them to avoid overheating on their offspring. We found that historical, current, and future environmental temperatures exceed the maximum limit tolerated by developing embryos of both species. However, the available temperature at microhabitat level for viviparous and potential nesting places for oviparous lizards offer thermal refuges with temperatures lower than maximum threshold tolerated. Our data suggest that thermoregulatory behavior and nesting adjustments, jointly with microhabitat thermal heterogeneity might buffer damages of warmest environmental temperature expected on developing offspring of these 2 lizards.

Citas

Ackerman, R.A., & Lott, D.B. (2004). Thermal, hydric and respiratory climate of nests. In: D.C. Deeming, (Eds.), Reptilian incubation: environment, evolution, and behavior. Nottingham University Press, United Kingdom. p 15-43.

Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley & Sons.

Andrews, R., & Rose, B.R. (1994). Evolution of viviparity: constraints on egg retention. Physiological Zoology, 6, 1006-1024.

Andrews, R. (1998). Geographic variation in field body temperature of Sceloporus lizards. Journal of Thermal Biology, 23, 329-33 4.

Andrews, R.M., Mathies, T., & Warner, D. (2000). Effect of Incubation Temperature on Morphology, Growth, and Survival of Juvenile Sceloporus undulatus. Herpetological Monographs, 14, 420–431.

Angilletta, M.J. (2009). Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, Oxford UK. 309 p.

Angilletta, M.J., Sears, W.S., & Pringle, M.P. (2009). Spatial dynamics of nesting behavior: lizards shift microhabitats to construct nest with beneficial thermal proprieties. Ecology, 23, 231-232.

Bakken, G.S. (1992). Measurement and application of operative and standard operative temperatures in ecology. American Zoologist, 32, 194-216.

Barrows, C.W., Rotenberry, J.T., & Allen, M.F. (2010). Assessing sensitivity to climate change and drought variability of a sand dune endemic lizard. Biological Conservation, 143, 731-736.

Bawens, D.P., Hertz, H. & Castilla, A.M. (1996). Thermorregulation in lacertid lizard: The relative contributions of distinct behavioral mechanisms. Ecology, 77, 1818-1830.

Beal, M.S., Lattanzio, M.S., & Miles, D.B. (2014). Differences in the thermal physiology of adult Yarrow's spiny lizards (Sceloporus jarrovii) in relation to sex and body size. Ecology and evolution, 4, 4220-4229.

Bell, E.L., Smith, H.M., & Chiszar, D. (2003). An annotated list of the species- group names applied to the lizard genus Sceloporus. Acta Zoologica Mexicana, 90, 103-174.

Beuchat, C.A. (1986). Reproductive influences on the thermoregulatory behavior of a live-bearing lizard. Copeia, 4, 971-979.

Beuchat, C. A., & Ellner, S. (1987). A quantitative test of life history theory: Thermoregulation by viviparous lizard. Ecological Monographs, 57, 45-60.

Bradshaw, W.E., & Holzapfel, C.M. (2006). Evolutionary Response to Rapid Climate Change. Science, 312, 1477-1478.

Buckley, L.B., Ehrenberger, J.C., & Angilletta, M.J. (2015). Thermoregulatory behavior limits local adaptation of thermal niches and confers sensitivity to climate change. Functional Ecology, 29, 1038-1047.

Carrascal, L.M., López, P., Martín. J., & Salvador, A. (1992). Basking and Antipredator Behaviour in a High Altitude Lizard: Implications of Heat-exchange Rate. Ethology, 92, 43-154.

Chen, I.C, Hill, J.K, Ohlemüller, R, Roy, D.,B., Thomas. C.D., (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024.

Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K., Ghalambor, C.K., Haak, D. C., & Martin, P.R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences USA, 105, 6668-6672.

Doody, J.S. (2009). Superficial lizards in cold climates: Nest site choice along an elevational gradient. Austral Ecology, 34, 773–779.

Dzialowski, E. (2005). Use of operative temperature and standard operative temperature models in thermal biology. Journal of Thermal Biology, 30, 317-334.

Evgen’ev, M.B., Garbuz, D.G., Shilova, V.Y., & Zatsepina, O.G. (2007). Molecular mechanism underlying adaptation of xeric animals. Journal of Bioscience, 32, 489-499.

Ferri‐Yáñez, F., & Araújo, M.B., 2015. Lizards could be warming faster than climate. Ecography, 38, 437-439.

Grant, B.W., & Dunham, A.E. (1988). Thermally imposed time constraints on the activity of the desert lizard Sceloporus merriami. Ecology, 69, 167-176.

Goller, M., Goller, F., & French, S.S. (2014). A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana. Ecology and Evolution, 4, 3319-3329.

Guillette, L.J., & Sullivan, W.P. (1985). The reproductive and fat body cycle of the lizard Sceloporus formosus. Journal of Herpetology, 19, 474-480.

Hertz, P.E. (1992). Temperature regulation in Puerto Rican Anolis lizards: A field test using null hypotheses. Ecology, 73, 1405-1417.

Hertz, P.E., Huey, R.B., & Stevenson, R. (1993). Evaluating temperature regulation by field active ectotherms: The fallacy of the inappropriate question. American Naturalist, 142, 796-818.

Huey, R.B., Hertz, P.E., & Sinervo. B. (2003). Behavioral drive versus behavioral inertia in evolution: a null model approach. American Naturalist, 161. 357-365.

Huey, R.B., & Tewksbury, J.J. (2009). Can behavior douse the fire of climate warming? Proceedings of the National Academy of Sciences USA, 106, 3647-3648.

Huey, R.B., Tewksbury, J.J., Deutsch, C.A., Vitt, L.J., & Hertz, P.E., Pérez, H.J.A., & Garland, T. (2009). Why tropical forest lizard are vulnerable to climate warming. Proceedings of the Royal Society of London B: Biological Sciences, 276, 1939-1948.

Huey, R.B., Kearney, M.R., Krockenberger, A., Holtum, J.A., Jess, M., & Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 1665–79.

IPCC (Intergovernmental Panel on Climate Change), (2013). Climate Change 2013: The physical science basis, IPCC. Cambridge University Press New York: 886 p.

Kearney, M., Shine, R., & Porter, W.P. (2009). . The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proceedings of the National Academy of Sciences USA, 106, 3835-3840.

Leal, M., & Gunderson, A.R., (2012). Rapid change in the thermal tolerance of a tropical lizard. American Naturalist, 180, 815–22.

Logan, M. (2011). Biostatistical design and analysis using R: a practical guide. John Wiley & Sons, UK:576 p.

Logan, M.L., Cox, R.M., & Calsbeek, R. (2014). Natural selection on thermal performance in a novel thermal environment. Proceedings of the National Academy of Sciences USA, 111, 14165-14169.

López-Alcaide. S. &, Macip-Ríos, R. (2011). Effects of Climate Change in Amphibians and Reptiles. In: O. Grillo, G. Venora (Eds.). Biodiversity loss in a changing planet. In Tech, Rijeka, Croatia. 163-184.

Moritz, C., Langham, G., Kearney, M., Krockenberger, A., VanDerWal, J., & Williams, S. (2012).Integrating phylogeography and physiology reveals divergence of thermal traits between central and peripheral lineages of tropical rainforest lizards. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 1680-1687.

Niehaus, A.C., Angilletta, M.J., Sears, M.W., Franklin, C.E., & Wilson, R.S. (2012). Predicting the physiological performance of ectotherms in fluctuating thermal environments. Journal of Experimental Biology, 215, 694–701.

Parker, G., Tinoco-Ojanguren, C., Martínez-Yrízar, A., & Maass, M. (2005). Seasonal balance and vertical pattern of photosynthetically active radiation within canopies of a tropical dry deciduous forest ecosystem in Mexico. Journal of Tropical Ecology, 21, 283-295.

Pigliucci, M., Murren, C.J., & Schlichting. C.D. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 9, 2362-2367.

R Development Core Team, (2013).. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.URL http://www.R-project.org/

Scheffers, B.R., Edwards, D.P., Diesmos, A., Williams, S.E., & Evans, T.A. (2014). Microhabitats reduce animal's exposure to climate extremes. Global Change Biology, 20, 495-503.

Sears, M.W., Raskin, E., & Angilletta, M.J. (2011). The world is not flat: defining relevant thermal landscapes in the context of climate change. Integrative and Comparative Biology, 51, 666–75.

Sinervo, B., Mendez-de-la-Cruz, F., Miles, D.B., Heulin, B., Bastiaans, E., Villagran-Santa Cruz, M., Lara-Resendiz, R., Martinez-Mendez, N., Calderon-Espinosa, M.L., Meza-Lazaro, R.N., Gadsden, H., Avila, L.J., Morando, M., De la Riva, I.J., Sepulveda, P.V., Rocha, C.F.D., Ibarguengoytia, N., Puntriano, C.A., Massot, M., Lepetz, V., Oksanen, T.A., Chapple, D.G., Bauer, A.M., Branch, W.R., Clobert, J.,& Sites, J.W. (2010). Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches. Science, 328, 894-899.

Sites, J.W., Archie, J.W., Cole, C.J. & Flores-Villela O. (1992). A review of phylogenetic hypothesis for lizards of the genus Sceloporus (Phrynosomatidae): implications for ecological and evolutionary studies. Bulletin of the American Museum of Natural History, New York.

Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences, 111, 5610-5615.

Tewksbury, J.J., Huey, R.B., Deutsch, C.A. (2008). Putting the heat on tropical animals. Science, 320, 1296-1297.

Valdéz-González, M.A., & Ramirez-Bautista, A. (2002). Reproductive characteristics of the spiny lizards Sceloporus horridus (Squamata: Phrynosomatidae) from México. Journal of Herpetology, 36, 36-46.

Valencia-limón, E.R., Castro-franco, R., & Bustos-Zagal, G.M. (2014). Dimorfismo Sexual y Ciclo Reproductor De Sceloporus Horridus Horridus (Wiegmann 1939) (Sauria: Phrynosomatidae). Acta Zoologica Mexicana, 30, 91–105.

Warner, D.A., & Andrews, R.M. (2002) Nest-site selection in relation to temperature and moisture by the lizard Sceloporus undulatus. Herpetologica, 58, 399-407.

Williams, J.W., Jackson, S.T., & Kutzbach, J.E. (2007). Projected distributions of novel and disappearing climates by 2100 A D. Proceedings of the National Academy of Sciences, 104, 5738-5742.

Descargas

Publicado

2017-08-21

Número

Sección

ECOLOGÍA