Una mirada macroecológica del riesgo de pérdida evolutiva de los roedores de Chile
DOI:
https://doi.org/10.22201/ib.20078706e.2025.96.5683Palabras clave:
Biogeografía, Conservación, Filogenia, Mastozoología, rasgosResumen
La pérdida de biodiversidad es un fenómeno global, pero sus impactos y respuestas varían según las regiones y grupos taxonómicos. En este estudio, aplicamos el enfoque EDGE (distinción evolutiva y en peligro global) para evaluar la priorización de la conservación de los roedores de Chile, altamente diversos y con alto endemismo. Calculamos los valores EDGE a partir de datos filogenéticos y del estado de conservación de 61 especies y analizamos su relación con el tamaño corporal y el rango de distribución mediante regresión filogenética de mínimos cuadrados. Además, examinamos la distribución espacial de la distinción evolutiva (ED) y el índice EDGE a lo largo del gradiente latitudinal de Chile. Nuestros resultados muestran que las especies con baja ED, pero alto peligro global (GE) presentan altos valores EDGE y que existe una asociación negativa entre EDGE y el tamaño del rango de distribución. A nivel espacial, encontramos altos valores de ED en el norte y sur del país, y altos valores de EDGE en el norte y centro-sur. Estos patrones destacan la necesidad de considerar tanto la historia evolutiva como las amenazas actuales para guiar estrategias de conservación más eficaces, especialmente en regiones subrepresentadas en los esquemas globales.
Citas
Avaria-Llautureo, J., Hernández, C. E., Boric-Bargetto, D., Canales-Aguirre, C. B., Morales-Pallero, B. y Rodríguez-Serrano, E. (2012). Body size evolution in extant Oryzomyini rodents: Cope’s Rule or miniaturization? Plos One, 7, e34654. https://doi.org/10.1371/journal.pone.0034654
BCN. (2024). Mapas vectoriales. Biblioteca del Congreso Nacional de Chile. https://www.bcn.cl/siit/mapas_vectoriales/index_html
Belmar-Lucero, S., Godoy, P., Ferrés, M., Vial, P. y Palma, R. E. (2009). Range expansion of Oligoryzomys longicaudatus (Rodentia, Sigmodontinae) in Patagonian Chile, and first record of Hantavirus in the region. Revista Chilena de Historia Natural, 82, 265–275. http://dx.doi.org/10.4067/S0716-078X2009000200008
Blackburn, T. M., Gaston, K. J. y Loder, N. (1999). Geographic gradients in body size: a clarification of Bergmann's rule. Diversity and Distributions, 5, 165–174. https://doi.org/10.1046/j.1472-4642.1999.00046.x
Cheng, P., Yu, D., Liu, S., Tang, Q. y Liu, H. (2014). Molecular phylogeny and conservation priorities of the subfamily Acheilognathinae (Teleostei: Cyprinidae). Zoological Science, 31, 300. https://doi.org/10.2108/zs130069
Chichorro, F., Urbano, F., Teixeira, D., Väre, H., Pinto, T., Brummitt, N. et al. (2022). Trait-based prediction of extinction risk across terrestrial taxa. Biological Conservation, 274, 109738. https://doi.org/10.1016/j.biocon.2022.109738
Cofré, H. L. y Marquet, P. A. (1999). Conservation status, rarity, and geographic priorities for conservation of Chilean mammals: An assessment. Biological Conservation, 88, 53–68. https://doi.org/10.1016/S0006-3207(98)00090-1
Cofré, H. L., Samaniego, H. y Marquet, P. A. (2007). Patterns of small mammal species richness in mediterranean and temperate Chile. The Quintessential Naturalist Honoring the Life and Legacy of Oliver P. Pearson. University of California Press. https://doi.org/10.1525/california/9780520098596.001.0001
Cooke, R. S. C., Eigenbrod, F. y Bates, A. E. (2020). Ecological distinctiveness of birds and mammals at the global scale. Global Ecology and Conservation, 22, e00970. https://doi.org/10.1016/j.gecco.2020.e00970
Cortés-Díaz, D., Buitrago-Torres, D. L., Restrepo-Cardona, J. S., Estellés-Domingo, I. y López-López, P. (2023). Bridging evolutionary history and conservation of new world vultures. Animals, 13, 3175. https://doi.org/10.3390/ani13203175
D’Elía, G., Canto, J., Ossa, G., Verde-Arregoitia, L. D., Bostelmann, E., Iriarte, A. et al. (2020). Lista actualizada de los mamíferos vivientes de Chile. Boletín Museo Nacional de Historia Natural, 69, 67–98. https://doi.org/10.54830/bmnhn.v69.n2.2020.6
Duclos, M., Silva-Pérez, C. P., Silva-Aránguiz, E. M. y Jaksic, F. M. (2024). Cráneos & Pelos. Guía de identificación de mamíferos de Chile. Santiago, Chile: Centro de Ecología Aplicada y Sustentabilidad, CAPES (ANID PIA/BASAL FB0002). https://capes.cl/craneosypelos/
Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. https://doi.org/10.1186/1471-2105-5-113
EDGE. (2024). The EDGE of Existence Programme. https://www.edgeofexistence.org/
Faith, D. P. (2019). EDGE of existence and phylogenetic diversity. Animal Conservation, 22, 537–538. https://doi.org/10.1111/acv.12552
Fourcade, Y. y Alhajeri, B. H. (2023). Environmental correlates of body size influence range size and extinction risk: a global study in rodents. Global Ecology and Biogeography, 32, 206–217. https://doi.org/10.1111/geb.13622
Fritz, S. A. y Purvis, A. (2010). Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology, 24, 1042–1051. https://doi.org/10.1111/j.1523-1739.2010.01455.x
Gaston, K. J. (2003). The structure and dynamics of geographic ranges. Oxford. Oxford University Press. https://archive.org/details/structuredynamic0000gast/page/n9/mode/2up
Gaulke, S., Martelli, E., Johnson, L., Letelier, C. G., Dawson, N. y Nelson, C. R. (2019). Threatened and endangered mammals of Chile: Does research align with conservation information needs? Conservation Science and Practice, 1, e99. https://doi.org/10.1111/csp2.99
GenBank. (2023). National Library of Medicine. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/genbank/
Griffith, P., Lang, J. W., Turvey, S. T. y Gumbs, R. (2023). Using functional traits to identify conservation priorities for the world’s crocodylians. Functional Ecology, 37, 112–124. https://doi.org/10.1111/1365-2435.14140
Gumbs, R., Gray, C. L., Böhm, M., Burfield, I. J., Couchman, O. R., Faith, D. P. et al. (2023). The EDGE2 protocol: advancing the prioritisation of Evolutionarily Distinct and Globally Endangered species for practical conservation action. Plos Biology, 21, e3001991. https://doi.org/10.1371/journal.pbio.3001991
Gumbs, R., Gray, C. L., Wearn, O. R. y Owen, N. R. (2018). Tetrapods on the EDGE: overcoming data limitations to identify phylogenetic conservation priorities. Plos One, 13, e0194680. https://doi.org/10.1371/journal.pone.0194680
Gumbs, R., Scott, O., Bates, R., Böhm, M., Forest, F., Gray, C. L. et al. (2024). Global conservation status of the jawed vertebrate Tree of Life. Nature Communications, 15, 1101. https://doi.org/10.1038/s41467-024-45119-z
Hernández-Mazariegos, Palma, R. E., y Escobar, L. E. (2023). Rodents of Chile: a brief appraisal of their conservation statusand ecological significance. Zookeys, 1254, 107–129. https://doi.org/10.3897/zookeys.1254.148057
Hidasi‐Neto, J., Loyola, R. y Cianciaruso, M. V. (2015). Global and local evolutionary and ecological distinctiveness of terrestrial mammals: identifying priorities across scales. Diversity and Distributions, 21, 548–559. https://doi.org/10.1111/ddi.12320
Huang, S., Davies, T. J. y Gittleman, J. L. (2012). How global extinctions impact regional biodiversity in mammals. Biology Letters, 8, 222–225. https://doi.org/10.1098/rsbl.2011.0752
Iriarte, A. (2007). Mamíferos de Chile. Santiago, Chile: Ediciones.
Iriarte, A. (2021). Guía de los mamíferos de Chile, 2da edición. Santiago, Chile: Flora y Fauna.
Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. y Baillie, J. E. M. (2007). Mammals on the EDGE: conservation priorities based on threat and phylogeny. Plos One, 2, e296. https://doi.org/10.1371/journal.pone.0000296
Jetz, W., McPherson, J. M. y Guralnick, R. (2012). Integrating biodiversity distribution knowledge: toward a global map of life, 27, 151–159. https://doi.org/10.1016/j.tree.2011.09.007
Johnson, T. F., Beckerman, A. P., Childs, D. Z., Webb, T. J., Evans, K. L., Griffiths, C. A. et al. (2024). Revealing uncertainty in the status of biodiversity change. Nature, 628, 788–794. https://doi.org/10.1038/s41586-024-07236-z
Keane, A., Brooke, M. L. y Mcgowan, P. J. K. (2005). Correlates of extinction risk and hunting pressure in gamebirds (Galliformes). Biological Conservation, 126, 216–233. https://doi.org/10.1016/j.biocon.2005.05.011
Kembel, S. W., Ackerly, D. D., Blomberg, S. P., Cornwell, W. K., Cowan, P. D., Helmus, M. R. et al. (2020). picante: Integrating Phylogenies and Ecology. R Package Version. https://CRAN.R-project.org/package=picante
Kennerley, R. J., Lacher, T. E., Hudson, M. A., Long, B., McCay, S. D., Roach, N. S. et al. (2021). Global patterns of extinction risk and conservation needs for Rodentia and Eulipotyphla. Diversity and Distributions, 27, 1792–1806. https://doi.org/10.1111/ddi.13368
Kumar, S., Stecher, G., Li, M., Knyaz, C. y Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
Llobet, T., Velikov, I., Sogorb, M., Peacock, F., Jutglar, F., Mascarell, A. et al. (2023). All the mammals of the World. Barcelona, Spain: Lynx Nature Books. https://lynxnaturebooks.com/product/all-the-mammals-of-the-world/
Lomolino, M. V., Riddle, B. R. y Whittaker, R. J. (2017). Biogeography: biological diversity across space and time. 5a Ed. Oxford: Sinauer Associates.
MacPhee, R. D. E. y Flemming, C. (1999). Requiem Aeternam: the last five hundred years of mammalian species extinctions. En R.D.E. MacPhee (Ed.), Extinctions in near time: causes, contexts and consequenses (pp. 333–371). Kluwer Academic/ Plenum Publisher.
Maestri, R. (2020). A macroecological perspective on neotropical rodents. Mastozoología Neotropical, 27, 24–34. https://doi.org/10.31687/saremMN_SI.20.27.1.04
Maestri, R., Luza, A. L., De Barros, L. D., Hartz, S. M., Ferrari, A., De Freitas, T. R. O. et al. (2016). Geographical variation of body size in sigmodontine rodents depends on both environment and phylogenetic composition of communities. Journal of Biogeography, 43, 1192–1202. https://doi.org/10.1111/jbi.12718
Marquet, P. A., Fernández, M., Pliscoff, P., Smith-Ramírez, C., Arellano, E., Armesto, J. et al. (2019). Áreas protegidas y restauración en el contexto del cambio climático en Chile. Informe de la mesa de Biodiversidad. Santiago: Ministerio de Ciencia, Tecnología, Conocimiento e Innovación.
MDD. (2024). Mammal diversity database [Dataset]. Zenodo. https://www.mammaldiversity.org/
Meiri, S., Bauer, A. M., Allison, A., Castro-Herrera, F., Chirio, L., Colli, G. et al. (2018). Extinct, obscure or imaginary: the lizard species with the smallest ranges. Diversity and Distributions, 24, 262–273. https://doi.org/10.1111/ddi.12678
Miranda, A., Altamirano, A., Cayuela, L., Lara, A. y González, M. (2017). Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Regional Environmental Change, 17, 285–297. https://doi.org/10.1007/s10113-016-1010-7
MMA (Ministerio del Medio Ambiente). (2018). Biodiversidad de Chile. Patrimonio y Desafíos. Tercera Edición. Tomo I. Santiago, Chile: Ministerio del Medio Ambiente.
MMA (Ministerio del Medio Ambiente). (2024). Lista de especies clasificadas desde el 1 al 19 proceso de clasificación RCE. Santiago, Chile: Ministerio del Medio Ambiente. https://clasificacionespecies.mma.gob.cl/
Mooers, A. Ø., Faith, D. P. y Maddison, W. P. (2008). Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. Plos One, 3, e3700. https://doi.org/10.1371/journal.pone.0003700
Owen, C. L., Bracken-Grissom, H., Stern, D. y Crandall, K. A. (2015). A synthetic phylogeny of freshwater crayfish: insights for conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140009. https://doi.org/10.1098/rstb.2014.0009
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884. https://doi.org/10.1038/44766
Pagel, M. (2002). Modelling the evolution of continuously varying characters on phylogenetic trees: the case of hominid cranial capacity. En N. MacLeod y P. Forey (Ed.). Morphology, Shape and Phylogenetics (pp. 269–286): Taylor y Francis.
Palma, R. E. y Rodríguez-Serrano, E. (2018). Systematics of Oligoryzomys (Rodentia, Cricetidae, Sigmodontinae) from southern Chilean Patagonia, with the description of a new species. Journal of Zoological Systematics and Evolutionary Research, 56, 280–299. https://doi.org/10.1111/jzs.12199
Paradis, E. y Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
Patton, J. L., Pardiñas, U. F. J. y D’Elía, G. (2015). Mammals of South America, Volume 2. Rodents. Chicago: University of Chicago Press. https://doi.org/10.7208/chicago/9780226169606.001.0001
Petit, I. J., Campoy, A. N., Hevia, M.-J., Gaymer, C. F. y Squeo, F. A. (2018). Protected areas in Chile: Are we managing them? Revista Chilena de Historia Natural, 91, 1. https://doi.org/10.1186/s40693-018-0071-z
Pie, M. R. y Meyer, A. L. S. (2017). The Evolution of range sizes in mammals and squamates: heritability and differential evolutionary rates for low- and high-latitude limits. Evolutionary Biology, 44, 347–355. https://doi.org/10.1007/s11692-017-9412-0
Poux, C., Chevret, P., Huchon, D., De Jong, W. W. y Douzery, E. J. P. (2006). Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Systematic Biology, 55, 228–244. https://doi.org/10.1080/10635150500481390
Quiroga-Carmona, M., González, A., Valladares, P., Hurtado, N. y D’Elía, G. (2023). Increasing the known specific richness of living mammals in Chile. Therya, 14, 215–222. https://doi.org/10.12933/therya-23-2217
Quiroga-Carmona, M., Storz, J. F. y D’Elía, G. (2023). Elevational range extension of the Puna Mouse, Punomys (Cricetidae), with the first record of the genus from Chile. Journal of Mammalogy, 104, 1144–1151. https://doi.org/10.1093/jmammal/gyad064
R Core Team. (2024). r: a language and environment for statistical. R Foundation for Statistical Computing. https://www.R-project.org/
Rambaut, A. (2009). Molecular evolution, phylogenetics and epidemiology. https://tree.bio.ed.ac.uk/software/tracer/
Redding, D. W., DeWolff, C. V. y Mooers, A. Ø. (2010). Evolutionary distinctiveness, threat status, and ecological oddity in primates. Conservation Biology, 24, 1052–1058. https://doi.org/10.1111/j.1523-1739.2010.01532.x
Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Ripple, W. J., Wolf, C., Newsome, T. M., Hoffmann, M., Wirsing, A. J. y McCauley, D. J. (2017). Extinction risk is most acute for the world’s largest and smallest vertebrates. Proceedings of the National Academy of Sciences, 114, 10678–10683. https://doi.org/10.1073/pnas.1702078114
Rivera, R., Aldunate, C., Jerez, V., Berenguer, J., Lisón, F., Chamorro, S. et al. (2023). Fauna, un recorrido por el endemismo de Chile. Santiago, Chile: Banco Santander y Museo Chileno de Arte Precolombino.
Roach, N. (2016). Octodon pacificus. The UICN Red List of Threatened Species 2016: e.T15090A78321512. http://dx.doi.org/10.2305/UICN.UK.2016-2.RLTS.T15090A78321512.en
Roach, N. y Kennerley, R. (2016a). Chinchilla chinchilla. The UICN Red List of Threatened Species 2016: e.T4651A22191157. http://dx.doi.org/10.2305/UICN.UK.20162.RLTS.T4651A22191157.en
Roach, N. y Kennerley, R. (2016b). Chinchilla lanigera, Long-tailed Chinchilla. The UICN
Red List of Threatened Species 2016: e.T4652A117975205. http://dx.doi.org/10.2305/UICN.UK.20162.RLTS.T4652A22190974.en
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, et al. (2012). MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
Rosauer, D. F., Laffan, S. W., Crisp, M. D., Donnellan, S. C. y Cook, L. G. (2009). Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology, 18, 4061–4072. https://doi.org/10.1111/j.1365-294X.2009.04311.x
Santini, L., Antão, L. H., Jung, M., Benítez-López, A., Rapacciuolo, G., Di Marco, M. et al. (2021). The interface between macroecology and conservation: existing links and untapped opportunities. Frontiers of Biogeography, 13.4, e53025. https://doi.org/10.21425/F5FBG53025
Smith, F. A., Brown, J. H., Haskell, J. P., Lyons, S. K., Alroy, J., Charnov, E. L. et al. (2004). Similarity of mammalian body size across the taxonomic hierarchy and across space and time. The American Naturalist, 163, 672–691. https://doi.org/10.1086/382898
Smyčka, J., Toszogyova, A. y Storch, D. (2023). The relationship between geographic range size and rates of species diversification. Nature Communications, 14, 5559. https://doi.org/10.1038/s41467-023-41225-6
Spotorno, A. E., Zuletar R, C., Walker, L. I., Manriquez, G., Valladares F, P. y Marin, J. C. (2013). A small, new gerbil-mouse Eligmodontia (Rodentia: Cricetidae) from dunes at the coasts and deserts of north-central Chile: molecular, chromosomic, and morphological analyses. Zootaxa, 3683, 377-394. https://doi.org/10.11646/zootaxa.3683.4.3
Stein, R. W., Mull, C. G., Kuhn, T. S., Aschliman, N. C., Davidson, L. N. K., Joy, J. B. et al. (2018). Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nature Ecology & Evolution, 2, 288–298. https://doi.org/10.1038/s41559-017-0448-4
Stevens, G. C. (1992). The elevational gradient in altitudinal range: an extension of rapoport’s latitudinal rule to altitude. The American Naturalist, 140, 893–911. https://doi.org/10.1086/285447
Teta, P., D’Elía, G., Lanzone, C., Ojeda, A., Novillo, A. y Ojeda, R. A. (2021). A reappraisal of the species richness of Euneomys Coues 1874 (Rodentia, Cricetidae), with emendations of the type localities of Reithrodon fossor Thomas 1899 and Euneomys mordax Thomas 1912. Mammalia, 85, 379–388. https://doi.org/10.1515/mammalia-2020-0157
Teta, P., Formoso, A., Tammone, M., De Tommaso, D. C., Fernández, F. J., Torres, J. et al. (2014). Micromamíferos, cambio climático e impacto antrópico: ¿Cuánto han cambiado las comunidades del sur de América del Sur en los últimos 500 años? Therya, 5, 7–38. https://doi.org/10.12933/therya-14-183
Teta, P. y Pardiñas, U. F. J. (2014). Variación morfológica cualitativa y cuantitativa en Abrothrix longipilis (Cricetidae, Sigmodontinae). Mastozoología Neotropical, 21, 291–309.
Tucker, C. M., Aze, T., Cadotte, M. W., Cantalapiedra, J. L., Chisholm, C., Díaz, S. et al. (2019). Assessing the utility of conserving evolutionary history. Biological Reviews, 94, 1740–1760. https://doi.org/10.1111/brv.12526
UICN (Unión Internacional para la Conservación de la Naturaleza). (2024). The Red List of threatened species. International Union for Conservation Nature. https://www.UICNredlist.org
UICN Standards and Petitions Committee. (2024). Guidelines for using the UICN Red List categories and criteria. https://www.UICNredlist.org/documents/RedListGuidelines.pdf
Upham, N. S. y Patterson, B. D. (2015). Evolution of the caviomorph rodents: a complete phylogeny and timetree of living genera. Mammalogical Research, 1, 63–120.
Webb, T. J. y Gaston, K. J. (2003). On the heritability of geographic range sizes. The American Naturalist, 161, 553–566. https://doi.org/10.1086/368296
Webb, T. J. y Gaston, K. J. (2005). heritability of geographic range sizes revisited: a reply to hunt. The American Naturalist, 166, 136–143. https://doi.org/10.1086/430726
WWF. (2020). Living planet report 2020-bending the curve of biodiversity loss (R.E.A. Almond, M. Grooten y T. Petersen (Eds). WWF, Gland, Switzerland.