Diferenciación morfológica en poblaciones de Ambystoma dumerilii en condiciones de cautiverio y vida libre

Autores/as

  • Berenice Ramírez-López Universidad Michoacana de San Nicolás de Hidalgo
  • Ireri Suazo-Ortuño Universidad Michoacana de San Nicolás de Hidalgo
  • Luis H. Escalera-Vázquez Universidad Michoacana de San Nicolás de Hidalgo
  • Omar Domínguez-Domínguez Universidad Michoacana de San Nicolás de Hidalgo
  • Yurixhi Maldonado-López Universidad Michoacana de San Nicolás de Hidalgo https://orcid.org/0000-0003-0161-1789

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.4969

Palabras clave:

Ambystoma, Achoque, Patrones alométricos, Asimetría fluctuante, Morfometría geométrica, Perturbación del hábitat

Resumen

Ambystoma dumerilii, conocido como “achoque”, es una salamandra microendémica del lago de Pátzcuaro, considerada como en peligro crítico. Las principales amenazas son los altos niveles de contaminación del agua y
de eutrofización, además de las especies invasoras dentro del hábitat del achoque. Por estas razones, un importante
esfuerzo de conservación se ha enfocado en la crianza del achoque en cautiverio. Sin embargo, el cautiverio es un
estresor derivado de las condiciones no óptimas que pueden tener importantes consecuencias fisiológicas que se
reflejan en las condiciones corporales. Por tanto, nuestro objetivo fue evaluar la condición de individuos de A. dumerilii a través del análisis de la morfología utilizando diferentes parámetros como tallas, morfometría geométrica, asimetría fluctuante y alometría, en individuos del lago de Pátzcuaro y en cautiverio. Encontramos que casi todos los rasgos tienen una relación alométrica negativa con el tamaño corporal en individuos de ambas condiciones. Nuestros resultados mostraron que los individuos del lago presentaron mayores tamaños en los caracteres morfológicos, cuerpos más delgados y mayores niveles de asimetría fluctuante que los individuos en cautiverio, todos estos resultados son consistentes en el contexto del desempeño con mayores adaptaciones potenciales para aumentar el rendimiento del nado que los individuos en cautiverio.

Biografía del autor/a

Yurixhi Maldonado-López, Universidad Michoacana de San Nicolás de Hidalgo

CATEDRÁTICA CONACYT

CONACYT-INIRENA UMSNH

Citas

Adams, D. C. (2000). Divergence of trophic morphology and resource use among populations of Plethodon cinereus and P. hoffmani in Pennsylvania - a possible case of character displacement. In R. C. Bruce, R. G. Jaeger, & L. D. Houck (Eds.), Biology of plethodontid salamanders (pp. 383–395). Boston, MA: Springer Science. https://doi.org/10.1007/978-1-4615-4255-1_19

Adams, D. C. (2004). Character displacement via aggressive interference in Appalachian salamanders. Ecology, 85, 2664–2670. https://doi.org/10.1890/04-0648

Adams, D. C., & Rohlf, F. J. (2000). Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. Proceedings of the National Academy of Sciences, 97, 4106–4111. https://doi.org/10.1073/pnas.97.8.4106

Aguilar-Miguel, X. (2005). Ambystoma dumerilii. Algunas especies de anfibios y reptiles contenidos en el Proyecto de Norma Oficial Mexicana PROY-NOM-059-ECOL-2000. Facultad de Ciencias, Centro de Investigación en Recursos Bióticos, Universidad Autónoma del Estado de México. Bases de datos SNIBCONABIO. Proyecto W035. México. D.F. Disponible en: http://www.conabio.gob.mx/conocimiento/ise/fichasnom/Ambystomadumerilii00.pdf

Aguilar-Miguel, X., & Casas Andreu, G. (2005). Ficha técnica de Ambystoma dumerilii. In Aguilar-Miguel, X. Algunas especies de anfibios y reptiles contenidos en el Proyecto de Norma Oficial Mexicana PROY-NOM-059-ECOL-2000. Facultad de Ciencias, Centro de Investigación en Recursos Bióticos, Universidad Autónoma del Estado de México. Bases de datos SNIB-CONABIO. Proyecto No. W035. México, D.F. Retrieved on November 28th, 2021 from: https://www.naturalista.mx/taxa/26782-Ambystoma-dumerilii

Alarcón‐Ríos, L., Velo‐Antón, G., & Kaliontzopoulou, A. (2017). A non‐invasive geometric morphometrics method for exploring variation in dorsal head shape in urodeles: sexual dimorphism and geographic variation in Salamandra salamandra. Journal of Morphology, 278, 475–485. https://doi.org/10.1002/jmor.20643

Altwegg, R., & Reyer, H. U. (2003). Patterns of natural selection on size at metamorphosis in water frogs. Evolution, 57, 872–882. https://doi.org//10.1111/j.0014-3820.2003.tb00298.x

Álvarez, D., & Nicieza, A. G. (2002). Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotion. Oecologia, 131, 186–195. https://doi.org//10.1007/s00442-002-0876-x

Anderson, J. D., & Worthington, R. D. (1971). The life history of the Mexican salamander Ambystoma ordinarium Taylor. Herpetologica, 27, 165–176.

Assis, V. R., Titon, S. C. M., Barsotti, A. M. G., Titon, B. Jr., & Gomes, F. R. (2015). Effects of acute restraint stress, prolonged captivity stress and transdermal corticosterone application on immunocompetence and plasma levels of corticosterone on the cururu toad (Rhinella icterica). Plos One, 10, e0121005. https://doi.org/10.1371/journal.pone.0121005

Aubret, F., & R. Shine. (2008). The origin of evolutionary innovations: locomotor consequences of tail shape in aquatic snakes. Functional Ecology, 22, 312–322. https://doi.org/10.1111/j.1365-2435.2007.01359.x

Azizi, E., & Horton, J. M. (2004). Pattern of axial and appendicular movements during aquatic walking in the salamander Siren lacertina. Zoology, 107, 111–120. https://doi.org/10.1016/j.zool.2004.03.002

Bookstein, F. L. (1997). Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis, 1, 225–243. https://doi.org/10.1016/S1361-8415(97)85012-8

Brunson, K. L., Avishai-Eliner, S., Hatalski, C. G., & Baram, T. Z. (2001). Neurobiology of the stress response early in life: evolution of a concept and the role of corticotropin releasing hormone. Molecular Psychiatry, 6, 647–656. https://doi.org/10.1038/sj.mp.4000942

Calisi, R. M., & Bentley, G. E. (2009). Lab and field experiments: are they the same animal? Hormones and Behavior, 56, 1–10. https://doi.org/10.1016/j.yhbeh.2009.02.010

Casas-Andreu, G., Cruz-Aviña, R., & Aguilar-Miguel, X. (2004). Un regalo poco conocido de México al mundo: el ajolote o axolotl (Ambystoma: Caudata: Amphibia). Con algunas notas sobre la crítica situación de sus poblaciones. Ciencia Ergo Sum, 10, 304–308.

Cayuela, H., Quay, L., Dumet, A., Léna, J. P., Miaud, C., & Rivière, V. (2017). Intensive vehicle traffic impacts morphology and endocrine stress response in a threatened amphibian. Oryx, 51, 182–188. https://doi.org/10.1017/S0030605315000812

Cuevas-Reyes, P., Canché-Delgado, A., Maldonado-López, Y., Fernandes, G. W., Oyama, K., & González-Rodríguez, A. (2018). Patterns of herbivory and leaf morphology in two Mexican hybrid oak complexes: importance of fluctuating asymmetry as indicator of environmental stress in hybrid plants. Ecological Indicators, 90, 164–170. https://doi.org/10.1016/j.ecolind.2018.03.009

Davis, A. K., & Maerz, J. C. (2010). Effects of exogenous corticosterone on circulating leukocytes of a salamander (Ambystoma talpoideum) with unusually abundant eosinophils. International Journal of Zoology, 2010, 735937. https://doi.org/10.1371/journal.pone.0163736

Davis, A. K., & Maerz, J. C. (2011). Assessing stress levels of captive-reared amphibians with hematological data: implications for conservation. Initiatives Journal of Herpetology, 45, 40–44. https://doi.org/10.1670/10-180.1

Davis, A. K., & Maney, D. L. (2018). The use of glucocorticoid hormones or leucocyte profiles to measure stress in vertebrates: What's the difference? Methods in Ecology and Evolution, 9, 1556–1568. https://doi.org/10.1111/2041-210X.13020

Davis, D. R., Ferguson, K. J., Schwarz, M. S., & Kerby, J. L. (2020). Effects of agricultural pollutants on stress hormones and viral infection in larval salamanders. Wetlands, 40, 577–586. https://doi.org/10.1007/s13157-019-01207-1

de Vosjoli, P. (1999). Designing environments for captive amphibians and reptiles. Veterinary clinics of North America: Exotic Animal Practice, 2, 43–68.

Deban, S. M., & Schilling, N. (2009). Activity of trunk muscles during aquatic and terrestrial locomotion in Ambystoma maculatum. Journal of Experimental Biology, 212, 2949–2959. https://doi.org/10.1242/jeb.032961

Delgado-Acevedo, J., & Restrepo, C. (2008). The contribution of habitat loss to changes in body size, allometry, and bilateral asymmetry in two Eleutherodactylus frogs from Puerto Rico. Conservation Biology, 22, 773–782. https://doi.org/10.1111/j.1523-1739.2008.00930.x

Denver, R. J. (1997). Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Hormones and Behavior, 31, 169–179. https://doi.org/10.1006/hbeh.1997.1383

Denver, R. J. (2009). Stress hormones mediate environment-genotype interactions during amphibian development. General and Comparative Endocrinology, 164, 20–31. https://doi.org/10.1016/j.ygcen.2009.04.016

Denver, R. J., Mirhadi, N., & Phillips, M. (1998). Adaptive plasticity in amphibian metamorphosis: response of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology, 79, 1859–1872. https://doi.org/10.2307/176694

Des Roches, S., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T. et al. (2018). The ecological importance of intraspecific variation. Nature Ecology & Evolution, 2, 57–64. https://doi.org/10.1038/s41559-017-0402-5

Duellman, W. E., & Trueb, L. (1986). Biology of amphibians. McGraw-Hill Book Co., New York. https://doi.org/10.2307/1445022

Duellman, W. E., & Trueb, L. (1994). Biology of amphibians. The Johns Hopkins University Press, Baltimore.

Essner, Jr., R. L., & Suffian, D. J. (2010). Captive husbandry in the Rocky Mountain Tailed Frog, Ascaphus montanus. Herpetological Review, 41, 181–184. https://doi.org/10.1126/sciadv.abn1104

Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics, 28, 659–687. https://doi.org/10.1146/annurev.ecolsys.28.1.659

Fitzpatrick, B. M., Benard, M. F., & Fordyce, J. A. (2003). Morphology and escape performance of tiger salamander larvae (Ambystoma tigrinum mavortium). Journal of Experimental Zoology, 297A, 147–159. https://doi.org/10.1002/JEZ.A.10254

Fox, G. A., Cooper, A. M., & Hayes, W. K. (2015). The dilemma of choosing a reference character for measuring sexual size dimorphism, sexual body component dimorphism, and character scaling: cryptic dimorphism and allometry in the scorpion Hadrurus arizonensis. Plos One, 10, e0120392. https://doi.org/10.1371/journal.pone.0120392

Frolich, L. M., & Biewener, A. A. (1992). Analysis of the functional role of the body axis during terrestrial and aquatic locomotion in the salamander Ambystoma tigrinum. Journal of Experimental Biology, 162, 107–130. https://doi.org/10.1242/jeb.162.1.107

Gangenova, E., Giombini, M. I., Zurita, G. A., & Marangoni, F. (2020). Morphological responses of three persistent native anuran species after forest conversion into monoculture pine plantations: tolerance or prosperity? Integrative Zoology, 15, 428–440. https://doi.org/10.1111/1749-4877.12440

Gray, M. J., & L. M. Smith. (2005). Influence of land use on postmetamorphic body size of playa lake amphibians. Journal of Wildlife Management, 69, 515–524.

Hoff, K., Huq, N., King, V. A., & Wassersug, R. J. (1989). The kinematics of larval salamander swimming. Canadian Journal of Zoology, 67, 2756–2761. https://doi.org/10.1139/z89-391

Hu, F., Crespi, E. J., & Denver, R. J. (2008). Programming neuroendocrine stress axis activity by exposure to glucocorticoids during postembryonic development of the frog Xenopus laevis. Endocrinology, 149, 5470–5481. https://doi.org/10.1210/en.2008-0767

Huacuz-Elías, D. C. (2002). Programa de conservación y manejo de Ambystoma dumerilii: el A. dumerilii del Lago de Pátzcuaro. Morelia, Mich: UMSNH.

Huacuz-Elías, D. C. (2008). Biología y conservación del género Ambystoma en Michoacán, México (Ph.D. Thesis). Universidad de Salamanca, Salamanca, España.

Huerto-Delgadillo, R. I., Vargas-Velázquez, S., & Ortiz-Paniagua, C. F. (2011). Estudio ecosistémico del lago de Pátzcuaro: aportes en gestión ambiental para el fomento del desarrollo sustentable. Jiutepec, Morelos: Instituto Mexicano de Tecnología del Agua.

Iglesias-Carrasco, M., Martín, J., & Cabido, C. (2017). Urban habitats can affect body size and body condition but not immune response in amphibians. Urban Ecosystems, 20, 1331–1338. https://doi.org/10.1007/s11252-017-0685-y

Ijspeert, A. J., & Cabelguen, J. M. (2006). Gait transition from swimming to walking: investigation of salamander locomotion control using nonlinear oscillators. In H. Kimura, K. Tsuchiya, A. Ishiguro, & H. Witte (Eds.), Adaptive motion of animals and machines (pp. 177–188). Tokio, Japan: Springer. https://doi.org/10.1007/4-431-31381-8_16

Irschick, D. J., & Garland, T. J. (2001). Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics, 32, 367–396. https://doi.org/10.1146/annurev.ecolsys.32.081501.114048

IUCN (International Union for Conservation of Nature) SSC (Species Survival Commission) Amphibian Specialist Group. (2020). Ambystoma dumerilii. The IUCN Red List of Threatened Species: e.T59055A53973725. Retrieved on November 28th 2020, from: https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T59055A53973725.en.

Jessop, T. M., Madsen, T., Sumner, J., Rudiharto, H., Phillips, J. A., & Ciofi, C. (2006). Maximum body Size among insular Komodo dragon populations covaries with large prey density. Oikos, 112, 422–429. https://doi.org/10.1111/j.0030-1299.2006.14371.x

Johansson, F., Lederer, B., & Lind, M. I. (2010). Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria. Plos One, 5, e11680. https://doi.org/10.1371/journal.pone.0011680

Klingenberg, C. P. (2003). Developmental instability as a research tool: using patterns of fluctuating asymmetry to infer the developmental origins of morphological integration. In M. Polak (Ed.), Developmental instability: causes and consequences (pp.427–442). New York: Oxford University Press.

Klingenberg, C. P. (2011). MorphoJ: an integrated software pack-age for geometric morphometrics. Molecular Ecology Resources, 11, 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

Lempa, K., Martel, J., Koricheva, J., Haukioja, K., Ossipov, V., Ossipova, S. et al. (2000). Covariation of fluctuating asymmetry, herbivory and chemistry during birch leaf expansion. Oecologia, 122, 354–360. https://doi.org/10.1007/s004420050041

Lens, L., von Dongen, S., & Matthysen, E. (2002). Fluctuating asymmetry as an early warning system in the critically endangered Taita Thrush. Conservation Biology, 16, 479–487. https://doi.org/10.1046/j.1523-1739.2002.00516.x

Lleonart, J., Salat, J., & Torres, G. J. (2000). Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85–93. https://doi.org/10.1006/jtbi.2000.2043

Lomolino, M. V., Channell, R., Perault, D. R., & Smith, G. A. (2001). Down- sizing nature: anthropogenic dwarfing of species and ecosystems. In J. L. Lockwood, & M. L. McKinney (Eds.), Biotic homogenization (pp. 223–243). New York: Kluwer Academic/ Plenum. https://doi.org/10.1007/978-1-4615-1261-5_11

Lowe, W. H., Likens, G. E., & Cosentino, B. J. (2006). Self-organization in streams: the relationship between movement behaviour and body condition in a headwater salamander. Freshwater Biology, 51, 2052–2062. https://doi.org/10.1111/j.1365-2427.2006.01635.x

Martel, J., Lempa, K., & Haukioja, E. (1999). Effect of stress and rapid growth on fluctuating asymmetry and insect damage in birch leaves. Oikos, 86, 208–216. https://doi.org/10.2307/3546439

Matthews, S. G. (2002). Early programming of the hypothalamo–pituitary–adrenal axis. Trends in Endocrinology and Metabolism, 13, 373–380. https://doi.org/10.1016/s1043-2760(02)00690-2

Michaels, C. J., Gini, B., & Preziosi, R. F. (2014). The importance of natural history and species-specific approaches in amphibian ex-situ conservation. The Herpetological Journal, 24, 135–145.

Milligan, J. R., Krebs, R. A., & Mal, T. K. (2008). Separating developmental and environmental effects on fluctuating asymmetry in Lythrum salicaria and Penthorum sedoides. International Journal of Plant Sciences, 169, 625–630. https://doi.org/10.1086/533600

Møller, P. A., & Manning, J. (2003). Growth and developmental instability. The Veterinary Journal, 166, 19–27. https://doi.org/10.1016/s1090-0233(02)00262-9

Montes-Calderón, M. A., Alvarado-Díaz, J., & Suazo-Ortuño, I. (2011). Abundancia, actividad espacial y crecimiento de Ambystoma ordinarium Taylor 1940 (Caudata: Ambysto-matidae) en Michoacán, México. Biológicas, 13, 50–53.

Morrison, C., Hero, J. M., & Browning, J. (2004). Altitudinal variation in the age at maturity, longevity, and reproductive lifespan of anuran in subtropical Queensland. Herpetologica, 60, 34–44. https://doi.org/10.1655/02-68

Murta-Fonseca, R. A., Folly, M., Carmo, L. F., & Martins, A. (2020). Growing towards disparity: geometric morphometrics reveals sexual and allometric differences in Aparasphenodon brunoi (Anura: Hylidae: Lophyohylinae) head shape. Cuadernos de Herpetología, 34, 1–11. https://doi.org/10.31017/CdH.2020.(2019-032)

Ortega, A. J. (1999). El ajolote. Elementos: Ciencia y Cultura, 036, 55-57.

Palmer, A. R., & Strobeck, C. (1986). Fluctuating asymmetry: measurement, analysis, patterns. Annual Review of Ecology Systematics, 17, 391–421. https://doi.org/10.1146/ANNUREV.ES.17.110186.002135

Phillips, B. L., Brown, G. P., Webb, J. K., & Shine, R. (2006). Invasion and the evolution of speed in toads. Nature, 439, 803. https://doi.org/10.1038/439803a

Ramírez-Hernández, G., Suazo-Ortuño, I., Alvarado-Díaz, J., Escalera-Vázquez, L. H., Maldonado-López, Y., & Tafolla-Venegas, D. (2019). Effects of habitat disturbance on parasite infection and stress of the endangered Mexican stream salamander Ambystoma ordinarium. Salamandra, 55, 160–172.

Ramírez-Herrejón, J. P., Zambrano, L., Mercado-Silva, N., Torres-Téllez, A., Pineda-García, F., Caraveo-Patiño, J. et al. (2014). Long term changes in the fish fauna of Lago de Pátzcuaro in Central México. Latin American Journal of Aquatic Research, 42, 137–149. https://doi.org/10.3856/vol42-issue1-fulltext-11

Relyea, R. A. (2001). Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology, 82, 523–540. https://doi.org/10.2307/2679877

Relyea, R. A., & Hoverman, J. T. (2003). The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs. Oecologia, 134, 596–604. https://doi.org/10.1007/s00442-002-1161-8

Riva-Tonini, J. F., Provete, D. B., Maciel, N. M., Morais, A. R., Goutte, S., Toledo, L. F. et al. (2020). Allometric escape from acoustic constraints is rare for frog calls. Ecology and Evolution, 10, 3686–3695. https://doi.org/10.1002/ece3.6155

Rohlf, F. J. (2015). The tps series of software. Hystrix the Italian Journal of Mammalogy, 26, 9–12. https://doi.org/10.4404/hystrix-26.1-11264

Semarnat (Secretaría del Medio Ambiente y Recursos Naturales). (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental - Especies nativas de México de flora y fauna silvestres - Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio - Lista de especies en riesgo. Diario Oficial de la Federación. 30 de diciembre de 2010, Segunda Sección, México.

Semarnat (Secretaría de Medio Ambiente y Recursos Naturales) (2018). Programa de Acción para la Conservación de las Especies Ambystoma spp. Ciudad de México: Semarnat/ Conanp.

Shaffer, H. B. (1984). Evolution in a paedomorphic lineage. II. Allometry and form in the Mexican ambystomatid salamanders. Evolution, 38, 1207–1218. https://doi.org/10.2307/2408629

Shaffery, H. M., & Relyea, R. A. (2015). Predator-induced defenses in five species of larval Ambystoma. Copeia, 103, 552–562. https://doi.org/10.1643/CE-14-043

Shi, Y., Puzianowska-Kuznicka, M., & Stolow, M. A. (1996). Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thryoid hormone and its receptors. Bioessays, 18, 391–399. https://doi.org/10.1002/bies.950180509

Sibly, R., & Calow, P. (1984). Direct and absorption costing in the evolution of life cycles. Journal of Theoretical Biology, 111, 463–473. https://doi.org/10.1016/S0022-5193(84)80234-9

Slight, D. J., Nichols, H. J., & Arbuckle, K. (2015). Are mixed diets beneficial for the welfare of captive axolotls (Ambystoma mexicanum)? Effects of feeding regimes on growth and behavior. Journal of Veterinary Behavior, 10, 185–190. https://doi.org/10.1016/j.jveb.2014.09.004

Soto-Rojas, C., Suazo-Ortuño, I., Montoya-Laos, J. A., & Alvarado-Díaz, J. (2017). Habitat quality affects the incidence of morphological abnormalities in the endangered salamander Ambystoma ordinarium. Plos One, 12, e0183573. https://doi.org/10.1371/journal.pone.0183573

Steinicke, H., Gruber, B., Grimm, A., Grosse, W. R., & Henle, K. (2015). Morphological shifts in populations of generalist and specialist amphibians in response to fragmentation of the Brazilian Atlantic forests. Nature Conservation, 13, 47–59. https://doi.org/10.3897/natureconservation.13.7428

Stoler, A. B., & Relyea, R. A. (2013). Leaf litter quality induces morphological and developmental changes in larval amphibians. Ecology, 94, 1594–1603. https://doi.org/10.1890/12-2087.1

Tejedo, M., Marangoni, F., Pertoldi, C., Richter‐Boix, A., Laurila, A., Orizaola, G. et al. (2010). Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Climate Research, 43, 31–39. https://doi.org/10.3354/cr00878

Titon, S. C. M., Assis, V. R., Titon, Jr. B., Cassettari, B. O., Fernandes, P. A. C. M., & Gomes, F. R. (2017). Captivity effects on immune response and steroid plasma levels of a Brazilian toad (Rhinella schneideri). Journal of Experimental Zoology A, 327, 127–138. https://doi.org/10.1002/jez.2078

Tomasini-Ortiz, C., Bravo-Inclán, L., Sánchez-Chávez, J., & Moeller-Chávez, G. (2016). Monitoreo de descargas de aguas residuales y su impacto en el lago de Pátzcuaro, México (2006-2011). Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, Desarrollo y Práctica, 9, 61–74. Retrieved from https://revistas.unam.mx/index.php/aidis/article/view/50113

Urban, M. C. (2010). Microgeographic adaptations of spotted salamander morphological defenses in response to a predaceous salamander and beetle. Oikos, 119, 646–658. https://doi.org/10.1111/j.1600-0706.2009.17970.x

Van Buskirk, J. (2011). Amphibian phenotypic variation along a gradient in canopy cover: species differences and plasticity. Oikos, 120, 906–914. https://doi.org/10.1111/j.1600-0706.2010.18845.x

Van Buskirk, J., & McCollum, S. A. (2000). Functional mechanisms of an inducible defence in tadpoles: morphology and behaviour influence mortality risk from predation. Journal of Evolutionary Biology, 13, 336–347. https://doi.org/10.1046/j.1420-9101.2000.00173.x

Van Buskirk, J., & Schmidt, B. R. (2000). Predator-induced phenotypic plasticity in larval newts: trade-offs, selection, and variation in nature. Ecology, 81, 3009–3028. https://doi.org/10.2307/177397

Vega-Trejo, R., Zúñiga-Vega, J. J., & Langerhans, R. B. (2014). Morphological differentiation among populations of Rhinella marina (Amphibia: Anura) in western Mexico. Evolutionary Ecology, 28, 69–88. https://doi.org/10.1007/s10682-013-9667-6

Velarde-Mendoza, T. (2012). Importancia ecológica y cultural de una especie endémica de ajolote (Ambystoma dumerilii) del lago de Pátzcuaro, Michoacán. Etnobiología, 10, 40–49.

Velickovic, M., & Perisic, S. (2006). Leaf fluctuating asymmetry of common plantain as an indicator of habitat quality. Plant Biosystems, 140, 138–145. https://doi.org/10.1080/11263500600756322

Vorndran, I. C., Reichwaldt, E., & Nürnberger, B. (2002). Does differential susceptibility to predation in tadpoles stabilize the Bombina hybrid zone? Ecology, 83, 1648–1659. https://doi.org/10.2307/3071985

Wright, A. N., & Zamudio, K. R. (2002). Color pattern asymmetry as a correlate of habitat disturbance in spotted salamanders (Ambystoma maculatum). Journal of Herpetology, 36, 129–133. https://doi.org/10.1670/0022-1511(2002)036[0129:CPAAAC]2.0.CO;2

Wu, Z., Li, Y., & Murray, B. R. (2006). Insular shifts in body size of rice frogs in the Zhoushan archipelago, China. Journal of Animal Ecology, 75, 1071–1080. https://doi.org/10.1111/j.1365-2656.2006.01126.x

Zambrano, L., Cordoval-Tapia, F., Ramírez-Herrejón, J. P., Mar-Silva, V., Bustamante, L., Camargo, T. et al. (2011). Las especies exóticas en el lago de Pátzcuaro, Michoacán, México. In R. Huerto-Delgadillo, S. Vargas-Velázquez, & C. Ortiz-Paniagua, (Eds.). Estudio ecosistémico del lago de Pátzcuaro. Jiutepec, Morelos: Instituto Mexicano de Tecnología del Agua. https://doi.org/10.13140/RG.2.1.3619.0242

Zhelev, Z. M., Popgeorgiev, G. S., & Georgieva, Z. K. (2014). Fluctuating asymmetry in the populations of Pelophylax ridibundus and Pseudepidalea viridis (Amphibia: Anura) in the region of the lead and zinc plant “Kardzhali” (South Bulgaria). Acta Zoologica Bulgarica, 66, 83–87.

Zhelev, Z. M., Popgeorgiev, G. S., Arnaudov, A. D., Georgieva, K. N., & Mehterov, N. H. (2015). Fluctuating asymmetry in Pelophylax ridibundus (Amphibia: Ranidae) as a response to anthropogenic pollution in south Bulgaria. Archives of Biological Sciences, 67, 1009–1023. https://doi.org/10.2298/ABS141210064Z

Zhelev, Z. M., Tsonev, S. V., & Angelov, M. V. (2019). Fluctuating asymmetry in Pelophylax ridibundus meristic morphological traits and their importance in assessing environmental health. Ecological Indicators, 107, 105589. https://doi.org/10.1016/j.ecolind.2019.105589

Descargas

Publicado

2023-08-11

Número

Sección

ECOLOGÍA