Soportando noches frías a gran altitud: estrategia de termorregulación de Atractus crassicaudatus, una serpiente tropical nocturna, endémica de los Andes orientales de Colombia

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2022.93.3705

Palabras clave:

Serpiente sabanera, Biología térmica, Termorregulación, Variación estacional, Montañas tropicales

Resumen

La termorregulación en la montaña tropical Andina impone retos para los reptiles. La interacción entre los requisitos térmicos de los individuos con las condiciones térmicas externas en estos entornos es poco conocida. Examinamos la estrategia de termorregulación de la serpiente nocturna Atractus crassicaudatus (Duméril, Bibron and Duméril, 1854), en el norte de los Andes. Describimos la relación entre la temperatura corporal de las serpientes, en
campo y en laboratorio, con las temperaturas operativas durante 2 temporadas climáticas. Comparamos también la temperatura seleccionada (Tsel) durante la fotofase y la escotofase. Atractus crassicaudatus selecciona temperaturas corporales diferentes entre temporada seca (Tsel = 19.53-21.30 °C) y lluviosa (Tsel = 17.27-19.23 °C); termorregula
activamente en seca y es termoconformista en lluvias. El uso de refugios rocosos en hábitat abiertos y semiabierto y el ajuste estacional de la temperatura seleccionada, sugiere tigmotermia y plasticidad en su fisiología térmica. Estas
serpientes seleccionan un intervalo similar de temperaturas durante la fotofase y la escotofase, por lo que posiblemente termorregula comportamentalmente aún durante la fase de inactividad. En conclusión, esta serpiente nocturna responde a la variación circadiana y estacional en la calidad térmica de su microambiente mediante ajuste comportamental y
fisiológico.

Biografía del autor/a

R. Felipe Paternina-Cruz, Universidad Nacional de Colombia, sede Bogotá

Magister en Ciencias biológicas de la
Universidad Nacional de Colombia. Sus principales
intereses son las interacciones entre los reptiles y
los factores ambientales y cómo estas interacciones se
modifican por el calentamiento global. Está interesado
en los riesgos de extinción y en los ajustes fisiológicos
de los individuos, así como en establecer proyectos de conservación de especies y ecosistemas.

Citas

Anderson, N. L., Hetherington, T. E., Coupe, B., Perry, G., Williams, J. B., & Lehman, J. (2005). Thermoregulation in a nocturnal, tropical, arboreal snake. Journal of Herpetology, 39, 82–90. https://doi.org/10.1670/0022-1511(2005)039[0082:TIANTA]2.0.CO;2

Autumn, K., & De Nardo, D. F. (1995). Behavioral thermoregulation increases growth rate in a nocturnal lizard. Journal of Herpetology, 29, 157–162.

Autumn, K., Weinstein, R. B., & Full, R. J. (1994). Low cost of locomotion increases performance at low temperature in a nocturnal lizard. Physiological Zoology, 67, 238–262. https://doi.org/10.1086/physzool.67.1.30163845

Avery, R. (1982). Field studies of body temperatures and thermoregulation. In C. Gans, & F. H. Pough (Eds.), Biology of the Reptilia, Vol. 12 (pp. 93–166). London: Academic Press.

Bakken, G. S. (1992). Measurement and application of operative and standard operative temperatures in ecology. American Zoologist, 32, 194–216. https://doi.org/10.1093/icb/32.2.194

Bakken, G. S., Santee, W. R., & Erskine, D. J. (1985). Operative and standard operative temperature: tools for thermal energetics studies. American Zoologist, 25, 933–943. https://doi.org/10.1093/icb/25.4.933

Bartholomew, G. A. (2005). Integrative Biology, an Organismic Biologist’s Point of View. Integrative and Comparative Biology, 45, 330–332. https://doi.org/10.1093/icb/45.2.330

Barwick, R. E. (1982). Observations on active thermoregulation in the tuatara, Sphenodon punctatus (Reptilia: Rhynchocephalia). New Zealand Herpetology. New Zealand Wildlife Service Occasional Publication, 2, 225–236.

Beaupre, S. J., Jacobson, E. R., Lillywhite, H. B., & Zamudio, K. (2004). Guidelines for use of live amphibians and reptiles in field and laboratory research. Revised by the Herpetological Animal Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists. Lawrence (KS): The American Society of Ichthyologists and Herpetologists.

Benavides-B., H. O., & Rocha-E., C. E. (2012). Indicadores que manifiestan cambios en el sistema climático de Colombia (años y décadas más calientes y las más y menos lluviosas). Bogotá: Ideam-Meteo/001-2012, Nota técnica del Ideam. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá.

Besson, A. A., & Cree, A. (2010). A cold-adapted reptile becomes a more effective thermoregulator in a thermally challenging environment. Oecologia, 163, 571–581.

Blouin-Demers, G., & Nadeau, P. (2005). The cost-benefit model of thermoregulation does not predict lizard thermoregulatory behavior. Ecology, 86, 560–566. https://doi.org/10.1890/04-1403

Blouin-Demers, G., & Weatherhead, P. J. (2001). Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology, 82, 3025–3043. https://doi.org/10.1890/0012-9658(2001)082[3025:TEOBRS]2.0.CO;2

Bovo, R. P., Marques, O. A., & Andrade, D. V. (2012). When basking is not an option: Thermoregulation of a viperid snake endemic to a small island in the south Atlantic of Brazil. Copeia, 3, 408–418. https://doi.org/10.1643/CP-11-029

Brown, G. P., & Weatherhead, P. J. (2000). Thermal ecology and sexual size dimorphism in northern water snakes, Nerodia sipedon. Ecological Monographs, 70, 311–330. https://doi.org/10.1890/0012-9615(2000)070[0311:TEASSD]2.0.CO;2

Bustard, H. R. (1967). Activity cycle and thermoregulation in the Australian gecko Gehyra variegata. Copeia, 4, 753–758.

Christian, K. A., & Weavers, B. W. (1996). Thermoregulation of monitor lizards in Australia: an evaluation of methods in thermal biology. Ecological Monographs, 66, 139–157. https://doi.org/10.2307/2963472

Cisneros-Heredia, D. F., & Romero, A. (2015). First country record of Atractus medusa (Serpentes, Dipsadidae) in Ecuador. Herpetology Notes, 8, 417–420.

Cowles, R. B., & Bogert, C. M. (1944). A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History, 83, 261–296.

Dorcas, M. E., Peterson, C. R., & Flint, M. E. (1997). The thermal biology of digestion in rubber boas (Charina bottae): physiology, behavior, and environmental constraints. Physiological Zoology, 70, 292–300. https://doi.org/10.1086/639601

Du, W. G. (2006). Preferred body temperature and thermal tolerance of the northern grass lizard Takydromus septentrionalis from localities with different longitudes. Acta Zoologica Sinica, 52, 478–482.

Dzialowski, E. M. (2005). Use of operative temperature and standard operative temperature models in thermal biology. Journal of Thermal Biology, 30, 317–334. https://doi.org/10.1016/j.jtherbio.2005.01.005

European Economic Commission. (1986). Directive 86/609/EEC. The approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Official Journal European Community, 358, 1–28.

Ferreira-Silva, C., Ribeiro, S. C., de Alcantara, E. P., & Avila, R. W. (2019). Natural history of the rare and endangered snake Atractus ronnie (Serpentes: Colubridae) in northeastern Brazil. Phyllomedusa: Journal of Herpetology, 18, 77–87. https://doi.org/10.11606/issn.2316-9079.v18i1p77-87

Firth, B. T., & Belan, I. (1998). Daily and seasonal rhythms in selected body temperatures in the Australian lizard Tiliqua rugosa (Scincidae): field and laboratory observations. Physiological Zoology, 71, 303–311. https://doi.org/10.1086/515919

Fitzgerald, M., Shine, R., & Lemckert, F. (2003). A reluctant heliotherm: thermal ecology of the arboreal snake Hoplocephalus stephensii (Elapidae) in dense forest. Journal of Thermal Biology, 28, 515–524. https://doi.org/10.1016/S0306-4565(03)00052-4

Fukuoka, Y. (1971). Soil temperature variation influenced by precipitation and its mechanism (1). Fukushima University Science Report, 21, 32–46.

Gvoždík, L. (2002). To heat or to save time? Thermoregulation in the lizard Zootoca vivipara (Squamata: Lacertidae) in different thermal environments along an altitudinal gradient. Canadian Journal of Zoology, 80, 479–492. https://doi.org/10.1139/z02-015

Herczeg, G., Herrero, A., Saarikivi, J., Gonda, A., Jäntti, M., & Merilä, J. (2008). Experimental support for the cost–benefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia, 155, 1–10.

Hertz, P. E. (1992). Temperature regulation in Puerto Rican Anolis lizards: a field test using null hypotheses. Ecology, 73, 1405–1417. https://doi.org/10.2307/1940686

Hertz, P. E., Huey, R. B. & Stevenson, R. (1993). Evaluating temperature regulation by field active ectotherms: the fallacy of the inappropriate question. American Naturalist, 142, 796–818. https://doi.org/10.1086/285573

Hill, L. (1980). Water relations and excretion of the tuatara, Sphenodon punctatus: an overview. In Proceedings of a Symposium held at Victoria University of Wellington (pp. 183–203).

Huertas-Barrera, W. J., & Rey-Pulido, K. G. (2018). Distribución potencial de Atractus crassicaudatus (Duméril, Bibron y Duméril, 1854), ante eventos de cambio climático en la Sabana de Bogotá, análisis de una posible variación intrapoblacional (Tesis). Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas. Bogotá, D.C.

Huey, R. B. (1982). Temperature, physiology, and the ecology of reptiles. In C. Gans, & F. H. Pough (Eds.), Biology of the Reptilia, Vol. 12 (pp. 25–91). London: Academic Press.

Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A. M., Jess, M., & Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: roles of homolog, physiology and adaptation. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 1665–1679. https://doi.org/10.1098/rstb.2012.0005

Huey, R. B., Niewiarowski, P. H., Kaufmann, J., & Herron, J. C. (1989). Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures? Physiological Zoology, 62, 488–504. https://doi.org/10.1086/physzool.62.2.30156181

Huey, R. B., & Slatkin, M. (1976). Cost and benefits of lizard thermoregulation. Quarterly Review of Biology, 51, 363–384. https://doi.org/10.1086/409470

Huey, R. B., & Webster, T. P. (1976). Thermal biology of Anolis lizards in a complex fauna: the Cristatellus group on Puerto Rico. Ecology, 57, 985–994. https://doi.org/10.2307/1941063

Hurtado, G. (2012). Análisis del comportamiento promedio y tendencias de largo plazo de las temperaturas mínimas medias para las regiones hidroclimáticas de Colombia. Bogotá: Nota Técnica del Ideam. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá.

Ibarguengoytia, N. R., Renner, M. L., Boretto, J. M., Piantoni, C., & Cussac, V. E. (2007). Thermal effects on locomotion in the nocturnal gecko Homonota darwinii (Gekkonidae). Amphibia-Reptilia, 28, 236–246. https://doi.org/10.1163/156853807780202440

Isaac, L. A., & Gregory, P. T. (2004). Thermoregulatory behaviour of gravid and non-gravid female grass snakes (Natrix natrix) in a thermally limiting high-latitude environment. Journal of Zoology, 264, 403–409. https://doi.org/10.1017/S095283690400593X

Jaramillo-Alba, J. L., Díaz de la Vega-Pérez, A. H., Bucio-Jiménez, L. E., Méndez-De la Cruz, F. R., & Pérez-Mendoza, H. A. (2020). Comparative thermal ecology parameters of the mexican dusky rattlesnake (Crotalus triseriatus). Journal of Thermal Biology, 92, 102695. https://doi.org/10.1016/j.jtherbio.2020.102695

Kearney, M., & Predavec, M. (2000). Do nocturnal ectotherms thermoregulate? A study of the temperate gecko Christinus marmoratus. Ecology, 81, 2984–2996. https://doi.org/10.1890/0012-9658(2000)081[2984:DNETAS]2.0.CO;2

Lara-Resendiz, R. A. (2020). ¿Qué implicaciones ecofisiológicas tiene la actividad nocturna en reptiles "diurnos"? Una revisión. Acta Biológica Colombiana, 25, 314–326. https://doi.org/10.15446/abc.v25n2.78511

Lara-Resendiz, R. A., Arenas-Moreno, D. M., & Méndez-De La Cruz, F. R. (2013). Termorregulación diurna y nocturna de la lagartija Phyllodactylus bordai (Gekkota: Phyllodactylidae) en una región semiárida del centro de México. Revista Chilena de Historia Natural, 86, 127–135.

Lüddecke, H. (1995). Intra- and interpopulational comparison of temperatures selected by Hyla labialis (Anura). In G. A. Llorente, A. Montori, X. Santos, & M. A. Carretero (Ed.), Scientia Herpetologica (pp. 192–196). Barcelona: Asociación Herpetológica Española.

Luiselli, L., & Akani, G. C. (2002). Is thermoregulation really unimportant for tropical reptiles? Comparative study of four sympatric snake species from Africa. Acta Oecologica, 23, 59–68. https://doi.org/10.1016/S1146-609X(02)01134-7

Lutterschmidt, D. I., Lutterschmidt, W. I., Ford, N. B., & Hutchison, V. H. (2002). Behavioral thermoregulation and the role of melatonin in a nocturnal snake. Hormones and Behavior, 41, 41–50. https://doi.org/10.1006/hbeh.2001.1721

Méndez-Galeano, M. A., & Calderón-Espinosa, M. L. (2017). Thermoregulation in the Andean lizard Anolis heterodermus (Squamata: Dactyloidae) at high elevation in the Eastern Cordillera of Colombia. Iheringia, Série Zoologia, 107. https://doi.org/10.1590/1678-4766e2017018

Nobre, C. A., Sellers, P. J., & Shukla, J. (1991). Amazonian deforestation and regional climate change. Journal of Climate, 4, 957–988. https://doi.org/10.1175/1520-0442(1991)004<0957:ADARCC>2.0.CO;2

Pabón-Caicedo, J. D., Eslava-Ramírez, J. A., & Gómez-Torres, R. E. (2001). Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorologıa Colombiana, 4, 47–59.

Passos, P., & Dobiey, M., & Venegas, P. (2010). Variation and natural history notes on giant groundsnake, Atractus gigas (Serpentes: Dipsadidae). South American Journal of Herpetology, 5, 73–82. https://doi.org/10.2994/057.005.0201

Passos, P., Kok, P. R. J., Albuquerque, N. R., & Rivas, G. F. (2013). Groundsnakes of the lost world: a review of Atractus (Serpentes: Dipsadidae) from the Pantepui region, northern South America. Herpetological Monographs, 27, 52–86. https://doi.org/10.1655/HERPMONOGRAPHS-D-12-00001R2.1

Paternina-Cruz, R. F. (2016). Estrategia de termorregulación y riesgo de extinción de Atractus crassicaudatus (Squamata: Dipsadidae) asociado al calentamiento global (Tesis de maestría). Facultad de Ciencias, Universidad Nacional de Colombia. Bogotá, D.C.

Paternina, R. F., & Capera, M. V. H. (2017). Atractus crassicaudatus (Duméril, Bibron y Duméril, 1854). Catálogo de Anfibios y Reptiles de Colombia, 3, 7–13.

Patterson, J. W., & Davies, P. M. C. (1978). Preferred body temperature: seasonal and sexual differences in the lizard Lacerta vivipara. Journal of Thermal Biology, 3, 39–41.

Peterson, C. R. (1987). Daily variation in the body temperatures of free‐ranging garter snakes. Ecology, 68, 160–169. https://doi.org/10.2307/1938816

Rock, J., Andrews, R. M., & Cree, A. (2000). Effects of reproductive condition, season, and site on selected temperatures of a viviparous gecko. Physiological and Biochemical Zoology, 73, 344–355. https://doi.org/10.1086/316741

Row, J. R., & Blouin-Demers, G. (2006). Thermal quality influences effectiveness of thermoregulation, habitat use, and behavior in milk snakes. Oecologia, 148, 1–11.

Saint Girons, H. (1980). Thermoregulation in reptiles with special reference to the tuatara and its ecophysiology. Tuatara, 24, 59–80.

Secor, S. M., & Nagy, K. A. (1994). Bioenergetic correlates of foraging mode for the snakes Crotalus cerastes and Masticophis flagellum. Ecology, 75, 1600–1614. https://doi.org/10.2307/1939621

Shine, R., & Kearney, M. (2001). Field studies of reptile thermoregulation: how well do physical models predict operative temperatures? Functional Ecology, 15, 282–288.

Sinervo, B., Miles, D. B., Martínez-Méndez, N., Lara-Resendiz, R., & Méndez-De la Cruz, F. R. (2011). Response to comment on “Erosion of lizard diversity by climate change and altered thermal niches”. Science, 332, 537–537.

Sokal, R. R., & Rohlf, F. J. (2000). Biometry. New York: Freeman and Company.

Stevenson, R. D. (1985). The relative importance of Behavioral and Physiological adjustments controlling body temperature in Terrestrial Ectotherms. The American Naturalist, 126, 362–386. https://doi.org/10.1086/284423

Tejedo, M., Duarte, H., Gutiérrez-Pesquera, L. M., Beltrán, J. F., Katzenberger, M., Marangoni, F. et al. (2012). El estudio de las tolerancias térmicas para el examen de hipótesis biogeográficas y de la vulnerabilidad de los organismos ante el calentamiento global. Ejemplos en anfibios. Boletín de la Asociación Herpetológica Española, 23, 2–27.

Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science, 320, 1296–1297.

Uetz, P., Freed, P., Aguilar, R., & Hošek, J. (eds.) (2021) The Reptile Database, accessed [29th October 2021]. http://www.reptile-database.org

Van Damme, R., Bauwens, D., & Verheyen, R. F. (1986). Selected body temperatures in the lizard Lacerta vivipara: variation within and between populations. Journal of Thermal Biology, 11, 219–222.

Walls, G. Y. (1983). Activity of the tuatara and its relationships to weather conditions on Stephens Island, Cook Strait, with observations on geckos and invertebrates. New Zealand Journal of Zoology, 10, 309–317.

Weatherhead, P. J., Sperry, J. H., Carfagno, G. L., & Blouin-Demers, G. (2012). Latitudinal variation in thermal ecology of North American ratsnakes and its implications for the effect of climate warming on snakes. Journal of Thermal Biology, 37, 273–281. https://doi.org/10.1016/j.jtherbio.2011.03.008

Webb, J. K., Pringle, R. M., & Shine, R. (2004). How do nocturnal snakes select diurnal retreat sites? Copeia, 4, 919–925. https://doi.org/10.1643/CH-04-039R1

Webb, J. K., & Shine, R. (1998). Thermoregulation by a nocturnal elapid snake (Hoplocephalus bungaroides) in southeastern Australia. Physiological Zoology, 71, 680–692. https://doi.org/10.1086/515979

Descargas

Publicado

2022-11-04

Número

Sección

ECOLOGÍA