El valor de la polinización y los riesgos que enfrenta como servicio ecosistémico

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2018.3.2168

Palabras clave:

Apis mellifera, Cultivos polinizados por animales, Deterioro ambiental, Pérdida de biodiversidad, Pesticidas, Polinización, Polinizadores nativos, Polinizadores manejados

Resumen

La polinización es un servicio ecosistémico fundamental para el bienestar humano y la subsistencia de una gran diversidad de especies. Muchos de los cultivos que forman parte esencial de nuestra alimentación, así como un alto porcentaje de especies silvestres dependen de los polinizadores para producir frutos y semillas. En la última década se ha reportado un efecto negativo del deterioro ambiental sobre la abundancia, la diversidad y la actividad de los polinizadores como consecuencia de la introducción de especies no nativas, la transmisión de enfermedades, la destrucción del hábitat, la agricultura, el uso de pesticidas y el cambio climático, entre otros factores. Los riesgos que enfrenta la polinización ponen de manifiesto la necesidad de revisar el estado actual del conocimiento sobre esta problemática ambiental. Esta nota de opinión busca dar un panorama general de los principales factores que afectan a los polinizadores y que pueden tener consecuencias negativas sobre la polinización de especies cultivadas y silvestres; discute ejemplos reportados en Latinoamérica, y particularmente, en México, y sugiere posibles líneas de investigación para estudios futuros.

Biografía del autor/a

Paula Sosenski, Universidad Autónoma de Yucatán

CONACYT - Departamento de Ecología Tropical, Universidad Autónoma de Yucatán

 

 

César A. Domínguez, Universidad Nacional Autónoma de México

Investigador Titular "C", Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM

Citas

Aizen, M. A., Garibaldi, L.A., Cunningham, S. A. y Klein, A. M. (2008). Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Current Biology, 18, 1572-1575.

Aizen, M. A., Garibaldi, L.A., Cunningham, S. A. y Klein, A. M. (2009). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 103, 1579-1588.

Ashworth, L., Quesada, M., Casas, A., Aguilar, R. y Oyama, K. (2009). Pollination dependent food production in Mexico. Biological Conservation, 142, 1050-1057.

Balvanera, P. y Avalos, H. C. (2007). Acercamientos al estudio de los servicios ecosistémicos. Gaceta Ecológica, 84, 8-15.

Canto-Aguilar, M. A. y Parra-Tabla, V. (2000). Importance of conserving alternative pollinators: assessing the pollination efficiency of the squash bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae). Journal of Insect Conservation, 4, 201-208.

Chautá-Mellizo, A., Campbell, S. A., Bonilla, M. A., Thaler, J. S. y Poveda, K. (2012). Effects of natural and artificial pollination on fruit and offspring quality. Basic and Applied Ecology, 13, 524-532.

Cusser, S., Neff, J. L. y Jha, S. (2016). Natural land cover drives pollinator abundance and richness, leading to reductions in pollen limitation in cotton agroecosystems. Agriculture, Ecosystems & Environment, 226, 33-42.

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. y Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences USA, 105, 6668-6672.

Dohzono, I. y Yokoyama, J. (2010). Impacts of allien bees on native plant-pollinator relationships: A review with special emphasis on plant reproduction. Applied Entomology and Zoology, 45, 37-47.

Eckert, C. G., Kalisz, S., Geber, M. A., Sargent, R., Elle, E., Cheptou, P., Goodwillie, C., Johnston, M. O., Kelly, J. K., Moeller, D. A., Porcher, E., Ree, R. H., Vallejo-Marín, M. y Winn, A. A. (2009). Plant mating systems in a changing world. Trends in Ecology and Evolution, 25, 35-43.

Food and Agriculture Organization. (2007). Statistical Database. Available at http://faostat.fao.org; Agricultural data/Agricultural production/Crops primary.

Freitas, B. M. y Paxton, R. J. (1998). A comparison of two pollinators: the introduced honey bee Apis mellifera and an indigenous bee Centris tarsata on cashew Anacardium occidentale in its native range of NE Brazil. Journal of Applied Ecology, 35, 109-121.

Fukase, J. y Simons, A. M. (2016). Increased pollinator activity in urban gardens with more native flora. Applied Ecology and Environmental Research, 14, 297-310.

Gaines-Day, H. R. y Gratton, C. (2016). Crop yield is correlated with honey bee hive density but not in high-woodland landscapes. Agriculture, Ecosystems and Environment, 218, 53-57.

Gallai, N., Salles, J-M., Settele, J. y Vaissière, B. E. (2008). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68, 810-821.

Garibaldi, L. A., Steffan‐Dewenter, I., Kremen, C., Morales, J. M., Bommarco, R. y Cunningham, S. A. (2011). Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 14, 1062-1072.

Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S.A. et a1. (2013). Wild pollinators enhance fruit set of crops regardless of honeybee abundance. Science, 339, 1608-1611.

Garibaldi, L. A., Carvalheiro, L. G., Vaissière, B. E., Gemmill-Herren, B., Hipólito, J., Freitas, B. M. et al. (2016). Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 351, 388-391.

Ghazoul, J. (2005). Buzziness as usual? Questioning the global pollination crisis. Trends in Ecology and Evolution, 20, 367-373.

Gill, R. J., Baldock, K. C., Brown, M. J. F., Cresswell, J. E., Dicks, L. V., Fountain, M. T. et al. (2016). Protecting an ecosystem service: approaches to understanding and mitigating threats to wild insect pollinators. Advances in Ecological Research 135-206.

González, C. A. (2003). De vampiros a vampiros. Foresta Veracruzana, 5, 53-58.

González-Varo, J. P., Biesmeijer, J. C., Bommarco, R., Potts, S. G., Schweiger, O., Smith, H. G. et al. (2013). Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 28, 524-530.

Greenleaf, S. S. y Kremen, C. (2006). Wild bees enhance honey bees’ pollination of hybrid sunflower. Proceedings of the National Academy of Sciences, 103, 13890-13895.

Hanley, N., Breeze, T. D., Ellis, C. y Goulson, D. (2015). Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosystem Services, 14, 124-132.

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. y Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions? Ecology Letters, 12, 184-195.

Hladik, M. L., Vandever, M. y Smalling, K. L. (2016). Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Science of the Total Environment, 542, 469-477.

Kaluza, B. F., Wallace, H., Heard, T. A., Klein, A. M. y Leonhardt, S. D. (2016). Urban gardens promote bee foraging over natural habitats and plantations. Ecology and Evolution, 6, 1304-1316.

Kearns, C. A., Inouye, D. W. y Waser, N. M. (1998). Endangered mutualisms: The conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics, 29, 83-112.

Kevan, P. G., Clark, E. A. y Thomas, V. G. (1990). Insect pollinators and sustainable agriculture. American Journal of Alternative Agriculture, 5, 13-22.

Kjøhl, M., Nielsen, A. y Stenseth, N. C. (2011). Potential effects of climate change on crop pollination. Food and Agriculture Organization of the United Nations (FAO).

Klein, A-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C. y Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society of London: Biological Sciences, 274, 303-313.

Kluser, S. y Peduzzi, P. (2007). Global pollinator decline: a literature review. UNEP/GRID-Europe. Available at: http://archive-ouverte.unige.ch/unige:32258

Kremen, C., Williams, N. M., Aizen, M. A., Gemmill‐Herren, B., LeBuhn, G., Minckley, R. et al. (2007). Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land‐use change. Ecology Letters, 10, 299-314.

Kunz. T. H., Arnett, E. B., Erickson, W. P., Hoar, A. R., Johnson, G. D., Larkin, R. P., Strickland, M. D., Thresher, R. W. y Tuttle, M. D. (2007). Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Frontiers in Ecology and the Environment, 5, 315-324.

Montero-Castaño, A. y Vilà, M. (2015). Impact of landscape alteration and invasions on pollinators: a meta‐analysis. Journal of Ecology, 100, 884-893.

Motzke, I., Klein, A. M., Saleh, S., Wanger, T. C. y Tscharntke, T. (2016). Habitat management on multiple spatial scales can enhance bee pollination and crop yield in tropical homegardens. Agriculture, Ecosystems & Environment, 223, 144-151.

Mullin, C. A., Frazier, M., Frazier, J. L., Ashcraft, S., Simonds, R. y Pettis, J. S. (2010). High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One, 5, e9754.

National Research Council (US). Committee on the Status of Pollinators in North America, y National Academies Press (US). (2007). Status of pollinators in North America. USA: National Academy Press.

Osorio-Beristain, M., Domínguez, C. A., Eguiarte, L. E. y Benrey, B. (1997). Pollination efficiency of native and invading Africanized bees in the tropical dry forest anual plant, Kallstroemia grandiflora Torr ex Gray. Apidologie, 28, 11-16.

Paredes, D., Campos, M., y Cayuela, L. (2013). El control biológico de plagas de artrópodos por conservación: técnicas y estado del arte. Revista Ecosistemas, 22, 56-61.

Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D. et al. (2015). Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22, 68-102.

Pisanty, G. y Mandelik, Y. (2011). Effects of alien species on plant–pollinator interactions: how can native plants adapt to changing pollination regimes. En S. Patiny (Ed.), Evolution of the Plant-Pollinaton Relationships (pp. 414-438). Cambridge, UK: Cambridge University Press.

Potts, S. F., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O. y Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25, 345-353.

Rader, R., Bartomeus, I., Garibaldi, L. A. y Winfree, R. (2016). Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences, 113, 146-151.

Ricketts, T. H. (2004). Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conservation Biology, 18, 1262-1271.

Sarukhán, J., Koleff, P., Carabias, J., Soberón, J., Dirzo, R., Llorente-Bousquets, J. et al. (2008). En: Capital natural de México. Síntesis: Conocimiento actual, evaluación y perspectivas de sustentabilidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.

Schweiger, O., Biesmeijer, J. C., Bommarco, R., Hickler, T., Hulme, P. E., Klotz, S., Kühn, I., Moora, M., Nielsen, A., Ohlemüller, R., Petanidou, T., Potts, S. G., Pysek, P., Scout, J. C., Sykes, M.T., Tscheulin, T., Vilà, M., Walter, G-R., Westphal, C., Winter, M., Zobel, M. y Sttele, J. (2010). Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 85, 777-795.

Sharma, D., y Abrol, D. P. (2014). Role of Pollinators in Sustainable Farming and Livelihood Security. En R. K. Gupta, W. ReyBroeck, J. W. van Veen, y A. Gupta (Eds.), Beekeeping for Poverty Alleviation and Livelihood Security (pp. 379-411). Netherlands: Springer.

Stanley, D. A., Garratt, M. P. D., Wickens, J. B., Wickens, V. J., Potts, S. G. y Raine, N. E.

(2015). Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature, 528, 548-550.

Stanley, D. A. y Raine, N. E. (2016). Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Functional Ecology, 30, 1132-1139.

Steffan-Dewenter, I., Potts, S. G. y Packer, L. (2005). Pollinator diversity and crop pollination services are at risk. Trends in Ecology and Evolution, 20, 651-652.

Stout, J. C., y Morales, C. L. (2009). Ecological impacts of invasive alien species on bees. Apidologie, 40, 388-409.

Traveset, A. (2015). Impacto de las especies exóticas sobre las comunidades mediado por interacciones mutualistas. Ecosistemas, 24, 67-75.

van der Sluijs, J. P., Simon-Delso, N., Goulson, D., Maxim, L., Bonmatin, J. M. y Belzunces, L. P. (2013). Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability, 5, 293-305.

van Lexmond, M. B., Bonmatin, J. M., Goulson, D. y Noome, D. (2015). Environmental Science and Pollution Research, 22, 1-4.

van Tussenbroek, B. I., Villamil, N., Márquez-Guzmán, J., Wong, R., Monroy-Velázquez, L. V., y Solis-Weiss, V. (2016). Experimental evidence of pollination in marine flowers by invertebrate fauna. Nature communications, 7, 12980.

Vanbergen, A. J. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11, 251-259.

Watanabe, M. E. 1994. Pollination worries rise as honey bees decline. Science, 265, 1170.

Winfree, R., Williams, N. M., Dushoff, J. y Kremen, C. (2007). Native bees provide insurance against ongoing honey bee losses. Ecology Letters, 10, 1105-1113.

Winter, K., Adams, L., Thorp, R., Inouye, D., Day, L., Ascher, J. y Buchmann, S. 2006. Importation of non-native bumble bees into North America: Potential consequences of using Bombus terrestris and other non-native bumble bees for greenhouse crop pollination in Canada, Mexico, and the United Status. North American Pollinator Protection Campaign. USA.

Descargas

Publicado

2018-09-03

Número

Sección

NOTAS DE OPINIÓN