At home in the tropics: seasonal niche-tracking by the Yellow-green Vireo, Vireo flavoviridis, an intratropical migrant
DOI:
https://doi.org/10.22201/ib.20078706e.2023.94.5233Keywords:
Climate niche, Ecological niche models, Evolution of migration, Intratropical migration, NeotropicsAbstract
Migratory birds move geographically by tracking specific climatic conditions through time. However, we lack information about the climatic conditions birds are tracking, especially in intratropical migrants, whose movements are contained inside the tropics. The Yellow-green Vireo Vireo flavoviridis is an intratropical migrant whose migration patterns remain only partially documented and understood. Using GBIF presence records and WorldClim monthly climatic layers, we reconstructed ecological niche for Yellow-green Vireo’ reproductive and non-reproductive seasons. Then, we used a niche overlap analysis, based on a PCA-env approach and similarity tests, to assess overlap in climatic niches between seasons. We also projected climatic niches onto their spring and fall migration to evaluate the climatic conditions tracked by the species in transitional months. Overall, models revealed significant geographic inter-prediction between seasons. Similarity analyses showed high niche overlap between seasons; however, they failed to reject the null hypothesis of niche similarity. As expected by the hypothesis of niche conservatism in the tropics, Yellow-green Vireo is a niche follower. This information will help to clarify evolution of intratropical migration and provide ecological information for future conservation plans.
References
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545. https://doi.org/10.1111/ecog.01132
Allouche, O., Steinitz, O., Rotem, D., Rosenfeld, A., & Kadmon, R. (2008). Incorporating distance constraints into species distribution models. Journal of Applied Ecology, 45, 599–609. https://doi.org/10.1111/j.1365-2664.2007.01445.x
Anderson, R. P. (2012). Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Annals of the New York Academy of Sciences, 1260, 66–80. https://doi.org/10.1111/j.1749-6632.2011.06440.x
Armenteras, D., Espelta, J. M., Rodríguez, N., & Retana, J. (2017). Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980-2010). Global Environmental Change, 46, 139–147. https://doi.org/10.1016/j.gloenvcha.2017.09.002
Barry, J. H., Butler, L. K., Rohwer, S., & Rohwer, V. G. (2009). Documenting molt-migration in Western Kingbird (Tyrannus verticalis) using two measures of collecting effort. The Auk, 126, 260–267. https://doi.org/10.1525/auk.2009.07137
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T. et al. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 22211, 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011
Battery, C. J., & Klicka, J. (2017). Cryptic speciation and gene flow in a migratory songbird Species Complex: Insights from the Red-Eyed Vireo (Vireo olivaceus). Molecular Phylogenetics and Evolution, 113, 67–75. https://doi.org/10.1016/j.ympev.2017.05.006
Bell, C. P. (2000). Process in the evolution of bird migration and pattern in avian ecography. Journal of Avian Biology, 31, 258–265. https://doi.org/10.1034/j.1600-048X.2000.310218.x
Berthold, P. (1999). Towards a comprehensive theory for the evolution, control and adaptability of avian migration. Ostrich, 70, 1–11. https://doi.org/10.1080/00306525.1999.9639744
Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012
Boyle, W. A. (2008). Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia, 155, 397–403. https://doi.org/10.1007/s00442-007-0897-6
Boyle, W. A. (2017). Altitudinal bird migration in North America. The Auk, 134, 443–465. https://doi.org/10.1642/AUK-16-228.1
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G. et al. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Butler, L. K., Donahue, M. G., & Rohwer, S. (2002). Molt-migration in Western Tanagers (Piranga ludoviciana): age effects, aerodynamics, and conservation implications. The Auk, 119, 1010–1023. https://doi.org/10.1093/auk/119.4.1010
Callo, P. A., Morton, E. S., & Stutchbury, B. J. M. (2013). Prolonged spring migration in the Red-Eyed Vireo (Vireo olivaceus). The Auk, 130, 240−246. https://doi.org/10.1525/auk.2013.12213
Chapman, B., Hulthén, K., Wellenreuther, M., Hansson, L. A., Nilsson, J. A., & Brönmark, C. (2014). Patterns of animal migration. In L. A. Hansson, & S. Akesson (Eds.), Animal movement across scales (pp. 11–35). Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199677184.003.0002
Charmantier, A., & Gienapp, P. (2014). Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evolutionary Applications, 7, 15−28. https://doi.org/10.1111/eva.12126
Clements, J. F., Schulenberg, T. S., Iliff, M. J., Billerman, S. M., Fredericks, T. A., Gerbracht, J. A. et al. (2021). The eBird/ Clements checklist of Birds of the World: v2021. Recuperado en junio de 2021 de: https://www.birds.cornell.edu/clementschecklist/download/
Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019). kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7, 1−11. https://doi.org/10.7717/peerj.6281
Cohen, E. B., Auckland, L. D., Marra, P. P., & Hamer, S. A. (2015). Avian migrants facilitate invasions of neotropical ticks and tick-borne pathogens into the United States. Applied and Environmental Microbiology, 81, 8366−8378. https://doi.org/10.1128/AEM.02656-15
Davenport, L., Nole, I., & Carlos, N. (2012). East with the Night: Longitudinal Migration of the Orinoco Goose (Neochen jubata) between Manú National Park, Peru and the Llanos de Moxos, Bolivia. Plos One, 7, e46886. https://doi.org/10.1371/journal.pone.0046886
DeGraaf, R. M., & Rappole, J. H. (1995). Neotropical migratory birds: natural history, distribution, and population change. Ithaca, NY: Cornell University Press.
del Hoyo, J., Elliott, A., & Christie, D. A. (Eds.). (2010). Handbook of the birds of the World alive. Barcelona: Lynx Edicions.
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C. et al. (2016). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774–787. https://doi.org/10.1111/ecog.02671
Dingle, H., & Drake, A. (2007). What is migration? BioScience, 57, 113–121. https://doi.org/10.1641/B570206
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Escalona, M., Prieto-Torres, D., & Rojas-Runjaic, F. J. (2017). Unveiling the geographic distribution of Boana pugnax (Schmidt, 1857) (Anura, Hylidae) in Venezuela: new state records, range extension, and potential distribution. Check List, 13, 671–68. https://doi.org/10.15560/13.5.671
ESRI. (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
Faaborg, J., Holmes, R. T., Anders, A. D., Bildstein, K. L., Dugger, K. M., Gauthreaux, S. A. et al. (2010a). Recent advances in understanding migration systems of New World land birds. Ecological Monographs, 80, 3–48. https://doi.org/10.1890/09-0395.1
Faaborg, J., Holmes, R. T., Anders, A. D., Bildstein, K. L., Dugger, K. M., Gauthreaux, S. A. et al. (2010b). Conserving migratory land birds in the New World: Do we know enough? Ecological Applications, 20, 398–418. https://doi.org/10.1890/09-0397.1
Feeley, K. J., & Silman, M. R. (2011). The data void in modeling current and future distributions of tropical species. Global Change Biology, 17, 626–630. https://doi.org/10.1111/j.1365-2486.2010.02239.x
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
Gomez, C., Bayly, N. J., & Rosenberg, K. V. (2013). Seasonal variation in stopover site use: Catharus thrushes and vireos in northern Colombia. Journal of Ornithology, 154, 107–117. https://doi.org/10.1007/s10336-012-0876-5
Gómez, C., Tenorio, E. A., Montoya, P., & Cadena, C. D. (2016). Niche-tracking migrants and niche switching residents: Evolution of climatic niches in New World warblers (Parulidae). Proceedings of the Royal Society, 283,1–9. https://doi.org/10.1098/rspb.2015.2458
Guaraldo, A. C., Kelly, J. F., & Marini, M. A. (2016). Contrasting annual cycles of an intratropical migrant and a tropical resident bird. Journal of Ornithology, 157, 695–705. https://doi.org/10.1007/s10336-016-1327-5
Guevara-Torres, D. R., Salvador, J., Antezana, M., Hernández, F., Chumpitaz, K., & Saravia, P. (2017). Registros de Vireo flavoviridis en la costa central del Perú. Boletín UNOP, 12, 15–19.
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: insights from biological invasions. Trends in Ecology and Evolution, 29, 260–269. https://doi.org/10.1016/j.tree.2014.02.009
Hayes, F. E. (1995). Definitions for migrant birds: what is a neotropical migrant? The Auk, 112, 521–523. https://doi.org/10.2307/4088747
Heckscher, C. M., Halley, M. R., & Stampul, P. M. (2015). Intratropical migration of a Nearctic-Neotropical migratory songbird (Catharus fuscescens) in South America with implications for migration theory. Journal of Tropical Ecology, 31, 285–289. https://doi.org/10.1017/S0266467415000024
Heckscher, C. M., Taylor, S. M., Fox, J. W., & Afanasyev, V. (2011). Veery (Catharus fuscescens) wintering locations, migratory connectivity, and a revision of its winter range using geolocator technology. The Auk, 128, 531−542. https://doi.org/10.1525/auk.2011.10280
Hijmans, R. J., Bivand, R., van Etten, J., Forner, K., Ooms, J., & Pebesma, E. (2022). Package ‘Terra’. R package version 1.5-21.
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415– 427. http://dx.doi.org/10.1101/SQB.1957.022.01.039
Hutto, R. L. (1995). Can patterns of vegetation change in western Mexico explain population trends in western neotropical migrants? In M. H. Wilson, & S. A. Sader (Eds.), Conservation of neotropical migratory birds in Mexico (pp. 48–58). Orono, Maine: Maine Agricultural and Forest Experiment Station, Miscellaneous Publication.
IUCN (International Union for Conservation of Nature). (2022). The IUCN Red List of Threatened Species. Version 2021-3. Recuperado el 05 de mayo de 2022 de: https://www.iucnredlist.org
Jahn, A. E., Cueto, V. R, Fontana, C. S., Guaraldo, A. C., Levey, D. J., Marra, P. P. et al. (2020). Bird migration within the Neotropics. The Auk, 137, 1–23. https://doi.org/10.1093/auk/ukaa033
Jahn, A. E., Seavy, N. E., Bejarano, V., Guzmán, M. B., Provinciato, I. C. C., Pizo, M. A. et al. (2016). Intra-tropical migration and wintering areas of Fork-tailed Flycatchers (Tyrannus savana) breeding in São Paulo, Brazil. Revista Brasileira de Ornitologia, 24, 116–121. https://doi.org/10.1007/BF03544339
Johnson, M., Sherry, T., Strong, A., & Medori, A. (2005). Migrants in Neotropical bird communities: An assessment of the breeding currency hypothesis. Journal of Animal Ecology, 74, 333–341. https://doi.org/10.1111/j.1365-2656.2005.00928.x
Joseph, L. (1996). Preliminary climatic overview of migration patterns in South American austral migrant passerines. Ecotropica, 2, 185–193.
Joseph, L., Wilke, T., & Alpers, D. (2003). Independent evolution of migration on the South American landscape in a long-distance temperate-tropical migratory bird, Swainson’s flycatcher (Myiarchus swainsoni). Journal of Biogeography, 30, 925–937. https://doi.org/10.1046/j.1365-2699.2003.00841.x
Kaufman Field Guide to Birds of North America. (2005). Originally published (2000) as Kaufman Focus Guide to Birds of North America. Houghton Mifflin Co., Boston.
La Sorte, F. A., Fink, D., Blancher, P. J., Rodewald, A. D., Ruiz-Gutierrez, V., Rosenberg, K. V. et al. (2017). Global change and the distributional dynamics of migratory bird populations wintering in Central America. Global Change Biology, 23, 5284–5296. https://doi.org/10.1111/gcb.13794
Legge, S., Murphy, S., Igag, P., & Mack, A. L. (2004). Territoriality and density of an Australian migrant, the Buff-breasted Paradise Kingfisher, in the New Guinean non-breeding grounds. Austral Ornithology, 104, 15–20. https://doi.org/10.1071/MU03054
Levey, D. J. (1994). Why we should adopt a broader view of neotropical migrants. The Auk, 111, 233–236.
Levey, D. J., & Stiles, F. G. (1992). Evolutionary precursors of long-distance migration: resource availability and movement patterns in Neotropical landbirds. American Naturalist, 140, 447–476. https://doi.org/10.1086/285421
Liu, C., Newell, G., & White, M. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778–789. https://doi.org/10.1111/jbi.12058
MacPherson, M. P., Jahn, A. E., Murphy, M. T., Kim, D. H., Cueto, V. R., Tuero, D. T. et al. (2018). Follow the rain? Environmental drivers of Tyrannus migration across the New World. The Auk, 135, 881–894. https://doi.org/10.1642/AUK-17-209.1
Marcer, A., Chapman, A. D., Wieczorek, J. R., Picó, F., Uribe, F., Waller, J. et al. (2022). Uncertainty matters: ascertaining where specimens in natural history collections come from and its implications for predicting species distributions. Ecography, 2022, e06025. https://doi.org/10.1111/ecog.06025
Martin, T. E., & Finch, D. M. (1995). Ecology and management of neotropical migratory birds: a synthesis and review of critical issues. New York: Oxford University Press.
Martínez-Meyer, E., Peterson, A. T., & Navarro-Sigüenza, A. G. (2004). Evolution of seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae). Proceedings of the Royal Society B, 271, 1151–1157. https://doi.org/10.1098/rspb.2003.2564
Mendes, P., Elias-Velazco, S. J., Alves-de Andrade, A. F., & De Marco, Jr. P. (2020). Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecological Modelling, 43,109180. https://doi.org/10.1016/j.ecolmodel.2020.109180
Merow, C., Smith, M. J., Edwards, Jr. T.C., Guisan, A., Mcmahon, S. M., Normand, S. et al. (2014). What do we gain from simplicity versus complexity in species distribution models? Ecography, 37, 1267–1281. https://doi.org/10.1111/ecog.00845
Milá, B., Smith, T. B., & Wayne, R. K. (2006). Postglacial population expansion drives the evolution of long-distance migration in a songbird. Evolution, 60, 2403–2409. https://doi.org/10.1111/j.0014-3820.2006.tb01875.x
Morton, E. S. (1977). Intratropical migration in the Yellow-Green Vireo and Piratic Flycatcher. The Auk, 94, 97–106.
Murphy, P. C., Guralnick, R. P., Glaubitz, R., Neufeld, D., & Ryan, J. A. (2004). Georeferencing of museum collections: A review of problems and automated tools, and the methodology developed by the Mountain and Plains Spatio-Temporal Database-Informatics Initiative (Mapstedi). Phyloinformatics, 3, 1–29. https://doi.org/10.5281/zenodo.59792
Nakazawa, Y., Peterson, A. T., Martínez-Meyer, E., & Navarro-Sigüenza, A. G. (2004). Seasonal niches of Nearctic-Neotropical migratory birds: implications for the evolution of migration. The Auk, 121, 610–618.
Nava-Bolaños, A., Prieto-Torres, D. A., Osorio-Olvera, L., Soberón, J., Arizmendi, M. C., & Navarro-Sigüenza, A. G. (2023). Critical areas for pollinator conservation in Mexico: A cross-border priority. Biological Conservation, 283, 110119. https://doi.org/10.1016/j.biocon.2023.110119
Navarro-Sigüenza, A. G. (1992). Altitudinal distribution of birds in the Sierra Madre del Sur, Guerrero, Mexico. The Condor, 94, 29–39. https://doi.org/10.2307/1368793
Norris, D. R., & Marra, P. P. (2007). Seasonal interactions, habitat quality, and population dynamics in migratory birds. The Condor, 109, 535–547. https://doi.org/10.1093/condor/109.3.535
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C. et al. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience, 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Owens, H. L. Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J. et al. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
Peña-Peniche, A., Ruvalcaba-Ortega, I., & Rojas-Soto, O. (2018). Climate complexity in the migratory cycle of Ammodramus bairdii. Plos One, 13, 3(8): e0202678. https://doi.org/10.1371/journal.pone.0202678
Pérez-Navarro, M. A., Broennimann, O., Esteve, M. A., Moya-Pérez, J. M., Carreño, M. F., Guisan, A. & Lloret , F. (2020) Temporal variability is key to modeling the climatic niche. Diversity and Distributions, 27, 473–484. https://doi.org/10.1111/ddi.13207
Peterson, A. T., Komar, N., Komar, O., Navarro-Sigüenza, A. G., Robbins, M. B., & Martínez-Meyer, E. (2004). Priority contribution West Nile Virus in the New World: potential impacts on bird species. Bird Conservation International, 14, 215–232. https://doi.org/10.1017/S0959270904000309
Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Portillo-Quintero, C. A., & Sánchez-Azofeifa, G. A. (2010) Extent and conservation of tropical dry forests in the Americas. Biological Conservation, 143, 144–155. https://doi.org/10.1016/j.biocon.2009.09.020
Prieto-Torres, D. A, Nori, J., & Rojas-Soto, O. R. (2018) Identifying priority conservation areas for birds associated to endangered Neotropical dry forests. Biological Conservation, 228, 205–214. https://doi.org/10.1016/j.biocon.2018.10.025
Prieto-Torres, D. A., & Rojas-Soto, O. R. (2016). Reconstructing the Mexican Tropical Dry Forests via an autoecological niche approach: Reconsidering the ecosystem boundaries. Plos One, 11, e0150932. https://doi.org/10.1371/journal.pone.0150932
Pyle, P., Leitner, W. A., Lozano-Angulo, L., Avilez-Teran, F., Swanson, H., Gómez-Limón, E. et al. (2009). Temporal, spatial, and annual variation in the occurrence of molt-migrant passerines in the Mexican monsoon region. The Condor, 111, 583–590. https://doi.org/10.1525/cond.2009.090085
Qiao, H., Peterson, A. T., Campbell, L. P., Soberón, J., Ji, L., & Escobar, L. E. (2016). NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39, 805–813. https://doi.org/10.1111/ecog.01961
R Core Team. (2017). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rappole, J. (2013). The avian migrant: the biology of bird migration. New York: Columbia University Press. https://doi.org/10.7312/columbia/9780231146784.001.0001
Rohwer, S., Butler, L. K., & Froehlich, D. R. (2005). Ecology and demography of east-west differences in molt scheduling of Neotropical migrant passerines. In R. Greenberg, & P. P. Marra (Eds.), Birds of two worlds: the ecology and evolution of migration, (pp. 87–105). Baltimore: Johns Hopkins University Press.
Roubiceka, A. J., Van Der Wal, J., Beaumont, L. J., Pitmanc, A. J., Wilsona, P., & Hughes, L. (2010). Does the choice of climate baseline matter in ecological niche modelling? Ecological Modelling, 221, 2280–2286. https://doi.org/10.1016/j.ecolmodel.2010.06.021
Salewski, V., & Bruderer, B. (2007). The evolution of bird migration – a synthesis. Naturwissenschaften, 94, 268–279. https://doi.org/10.1007/s00114-006-0186-y
Sánchez-Barradas, A., Santiago-Jiménez, Q. J., & Rojas-Soto, O. (2017). Variación temporal en la distribución geográfica y ecológica de Amazona finschi, Psittaciformes: Psittacidae. Revista Biología Tropical, 65, 1194–1207. http://dx.doi.org/10.15517/rbt.v65i3.25417.
Santillán, V., Quitián, M., Tinoco, B. A., Zárate, E., Schleuning, M., Böhning-Gaese, K. et al. (2018) Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. Plos One, 13, e0196179. https://doi.org/10.1371/journal.pone.0196179
Schoener, T. W. (1968). The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704–726. https://doi.org/10.2307/1935534
Schulenberg, T. S. (2019). Cornell Lab of Ornithology, Ithaca, NY, USA. Neotropical Birds Online: https://birdsoftheworld.org/bow/home [September 15, 2019].
Skutch, A. F. (1960). Life histories of Central American Birds II. Pacific Coast Avifauna, Number 34. Berkeley, California: Cooper Ornithological Society.
Soberón, J. M. (2010). Niche and area of distribution modeling: a population ecology perspective. Ecography, 33, 159–167. http://dx.doi.org/10.1111/j.1600-0587.2009.06074.x
Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10.
Stutchbury, B. J. M., Siddiqui, R., Applegate, K., Hvenegaard, G. T., Mammenga, P., Mickle, N. et al. (2016). Ecological causes and consequences of intratropical migration in temperate-breeding migratory birds. American Naturalist, 188, S28–S40. http://dx.doi.org/10.1086/687531
Styrsky, S. D., Berthold, P., & Robinson, W. D. (2004). Endogenous control of migration and calendar effects in an intratropical migrant, the Yellow-Green Vireo. Animal Behaviour, 67, 1141–1499. https://doi.org/10.1016/j.anbehav.2003.07.012
Tingley, M. W., Monahanc, W. B., Beissingera, S. R., & Moritz, C. (2009). Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences, 106, 19637–19643. https://doi.org/10.1073/pnas.0901562106
Tobón-Sampedro, A., & Rojas-Soto, O. (2015). The geographic and seasonal potential distribution of the little-known Fuertes’s Oriole Icterus fuertesi. Bird Conservation International, 25, 489–502. https://doi.org/10.1017/S0959270914000501
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 35–342. https://doi.org/10.1890/10-1171.1
Wei, T., & Simko, V. (2017). R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84). https://github.com/taiyun/corrplot
Wiens J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology, and species richness. Trends in Ecology and Evolution, 19, 639–644. https://doi.org/10.1016/j.tree.2004.09.011
Wiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–39. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
Winger, B. M., Auteri, G. G., Pegan, T. M., & Weeks, B. C. (2019). A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biological Reviews, 94, 737–752. https://doi.org/10.1111/brv.12476
Winger, B. M., Barker, F. K., & Ree, R. H. (2014). Temperate origins of long-distance seasonal migration in New World songbirds. Proceedings of the National Academy of Sciences, 111, 12115–12120. https://doi.org/10.1073/pnas.1405000111
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A. et al. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x
Zink, R. M. (2011). The evolution of avian migration. Biological Journal of the Linnean Society, 104, 237–250. https://doi.org/10.1111/j.1095-8312.2011.01752.x
Zink, R. M., & Gardner, A. S., (2017). Glaciation as a migratory switch. Science Advances, 3, e1603133. https://doi.org/10.1126/sciadv.1603133
Zurell, D., Gallien, L., Graham, C. H., & Zimmermann, N. E. (2018). Do long-distance migratory birds track their niche through seasons? Journal of Biogeography, 45, 1459–1468. https://doi.org/10.1111/jbi.13351