Temporal variation of a plant-floral visitor network in a temperate forest in Michoacán, Mexico

Authors

  • Arturo Tavera Universidad Michoacana de San Nicolás de Hidalgo
  • Martín H. de Santiago-Hernández Universidad Michoacana de San Nicolás de Hidalgo
  • Eduardo Cuevas Universidad Michoacana de San Nicolás de Hidalgo https://orcid.org/0000-0001-9989-2237

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.5139

Keywords:

Angiosperms, Floral phenology, Rewiring, Species turnover

Abstract

The ecological network approach allows the analysis of interactions between plant communities and their floral visitors. However, most floral visitation network studies analyze the interactions with a temporally-static perspective. Hence, few studies have evaluated the temporal variation of these systems. This study characterized the plant-floral visitor interaction network of a temperate forest remnant in Michoacán, analyzing monthly changes in its composition, structure, and dynamics during 3 seasons of the year. In total, we recorded 1,325 floral visits and 131 links between 27 plant species and 74 floral visitor species. Most of the plant species observed belong to the families Lamiaceae, Asteraceae, and Apiaceae, while most of the floral visitor species observed belong to the orders Hymenoptera, Lepidoptera, and Diptera. Most of the floral visits were recorded in highly abundant plant species with longer flowering periods at the study site. The constant species turnover gave rise to monthly plant-floral visitor networks with different levels of specialization, connectance, nestedness, and modularity. Our results suggest that plant-floral
visitor networks in temperate forest remnants are highly dynamic and poorly connected, which makes them vulnerable to drastic changes in the environment.

References

Aizen, M. A., Morales, C. L., & Morales, J. M. (2008). Invasive mutualists erode native pollination webs. Plos Biology, 6, e31. https://doi.org/10.1371/journal.pbio.0060031

Alarcón, R., Waser, N. M., & Ollerton, J. (2008). Year‐to‐year variation in the topology of a plant–pollinator interaction network. Oikos, 117, 1796–1807. https://doi.org/10.1111/j.0030-1299.2008.16987.x

Almeida‐Neto, M., Guimaraes, P., Guimaraes, P. R. Jr., Loyola, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227–1239. https://doi.org/10.1111/j.0030-1299.2008.16644.x

Almeida-Neto, M., & Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling y Software, 26, 173–178. https://doi.org/10.1016/j.envsoft.2010.08.003

Argueta‐Guzmán, M., Golubov, J., Cano‐Santana, Z., & Ayala, R. (2022). The role of seasonality and disturbance in bee–plant interactions in semi‐arid communities of the southern Chihuahuan desert. Insect Conservation and Diversity, 15, 543–554. https://doi.org/10.1111/icad.12572

Ascher, J. S., & Pickering, J. (2013). Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). Available at: https://www.discoverlife.org/mp/20q?guide=Apoidea_species&flags=HAS:

Baldock, K. C., Memmott, J., Ruiz-Guajardo, J. C., Roze, D., & Stone, G. N. (2011). Daily temporal structure in African savanna flower visitation networks and consequences for network sampling. Ecology, 92, 687–698. https://doi.org/10.1890/10-1110.1

Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences, 100, 9383–9387. https://doi.org/10.1073/pnas.1633576100

Basilio, A. M., Medan, D., Torretta, J. P., & Bartoloni, N. J. (2006). A year‐long plant‐pollinator network. Austral Ecology, 31, 975–983. https://doi.org/10.1111/j.1442-9993.2006.01666.x

Bawa, K. S., Kang, H., & Grayum, M. H. (2003). Relationships among time, frequency, and duration of flowering in tropical rain forest trees. American Journal of Botany, 90, 877–887. https://doi.org/10.3732/ajb.90.6.877

Bersier, L. F., Banašek-Richter, C., & Cattin, M. F. (2002). Quantitative descriptors of food‐web matrices. Ecology, 83, 2394–2407. https://doi.org/10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2

Blüthgen, N., Fründ, J., Vázquez, D. P., & Menzel, F. (2008). What do interaction network metrics tell us about specialization and biological traits. Ecology, 89, 3387–3399. https://doi.org/10.1890/07-2121.1

Borchert, R., Meyer, S. A., Felger, R. S., & Porter‐Bolland, L. (2004). Environmental control of flowering periodicity in Costa Rican and Mexican tropical dry forests. Global Ecology and Biogeography, 13, 409–425. https://doi.org/10.1111/j.1466-822X.2004.00111.x

Burkle, L., & Irwin, R. (2009). The importance of interannual variation and bottom–up nitrogen enrichment for plant–pollinator networks. Oikos, 118, 1816–1829. https://doi.org/10.1111/j.1600-0706.2009.17740.x

Burkle, L. A., Marlin, J. C., & Knight, T. M. (2013). Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science, 339, 1611–1615. https://doi.org/10.1126/science.1232728

Burkle, L. A., Myers, J. A., & Belote, R. T. (2016). The beta‐diversity of species interactions: Untangling the drivers of geographic variation in plant–pollinator diversity and function across scales. American Journal of Botany, 103, 118–128. https://doi.org/10.3732/ajb.1500079

CaraDonna, P. J., Petry, W. K., Brennan, R. M., Cunningham, J. L., Bronstein, J. L., Waser, N. M. et al. (2017). Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecology Letters, 20, 385–394. https://doi.org/10.1111/ele.12740

Cook, R. R., & Quinn, J. F. (1998). An evaluation of randomization models for nested species subsets analysis. Oecologia, 113, 584–592. https://doi.org/10.1007/s004420050412

Cornejo-Tenorio, G., & Ibarra-Manríquez, G. (2007). Plant reproductive phenology in a temperate forest of the Monarch Butterfly Biosphere Reserve, Mexico. Interciencia, 32, 445–452.

Cortés-Flores, J., Andresen, E., Cornejo-Tenorio, G., & Ibarra-Manríquez, G. (2013). Fruiting phenology of seed dispersal syndromes in a Mexican Neotropical temperate forest. Forest Ecology and Management, 289, 445–454. https://doi.org/10.1016/j.foreco.2012.10.038

Cortés-Flores, J., Cornejo-Tenorio, G., & Ibarra-Manríquez, G. (2015). Flowering phenology and pollination syndromes in species with different growth forms in a Neotropical temperate forest of Mexico. Botany, 93, 361–367. https://doi.org/10.1139/cjb-2014-0218

Cortés‐Flores, J., Hernández‐Esquivel, K. B., González‐Rodríguez, A., & Ibarra‐Manríquez, G. (2017). Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors. American Journal of Botany, 104, 39–49. https://doi.org/10.3732/ajb.1600305

Cortés‐Flores, J., Lopezaraiza‐Mikel, M., de Santiago‐Hernández, M. H., Martén‐Rodríguez, S., Cristóbal‐Pérez, E. J., Aguilar‐Aguilar, M. J. et al. (2023). Successional and phenological effects on plant‐floral visitor interaction networks of a tropical dry forest. Journal of Ecology, 111, 927–942. https://doi.org/10.1111/1365-2745.14072

Crenna, E., Sala, S., Polce, C., & Collina, E. (2017). Pollinators in life cycle assessment: towards a framework for impact assessment. Journal of Cleaner Production, 140, 525–536. https://doi.org/10.1016/j.jclepro.2016.02.058

Cuartas-Hernández, S., & Medel, R. (2015). Topology of plant-flower-visitor networks in a tropical mountain forest: insights on the role of altitudinal and temporal variation. Plos One, 10, e0141804. https://doi.org/10.1371/journal.pone.0141804

de M. Santos, G. M., Aguiar, C. M., Genini, J., Martins, C. F., Zanella, F. C., & Mello, M. A. (2012). Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biological Invasions, 14, 2369–2378. https://doi.org/10.1007/s10530-012-0235-8

de Santiago‐Hernández, M. H., Martén‐Rodríguez, S., Lopezaraiza‐Mikel, M., Oyama, K., González‐Rodríguez, A., & Quesada, M. (2019). The role of pollination effectiveness on the attributes of interaction networks: from floral visitation to plant fitness. Ecology, 100, e02803. https://doi.org/10.1002/ecy.2803

Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. (2009). Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks. The Open Ecology Journal, 2, 7-24.

Dormann, C. F., Gruber, B., & Fründ, J. (2008). Introducing the bipartite package: analyzing ecological networks. Interaction, 1, 0.2413793.

Dormann, C. F., & Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5, 90–98. https://doi.org/10.1111/2041-210X.12139

Dupont, Y. L., & Olesen, J. M. (2009). Ecological modules and roles of species in heathland plant-insect flower visitor networks. Journal of Animal Ecology, 78, 346–353.

Dupont, Y. L., Padrón, B., Olesen, J. M., & Petanidou, T. (2009). Spatio‐temporal variation in the structure of pollination networks. Oikos, 118, 1261–1269. https://doi.org/10.1111/j.1600-0706.2009.17594.x

Escobedo-Kenefic, N., Landaverde-González, P., Theodorou, P., Cardona, E., Dardón, M. J., Martínez, O. et al. (2020). Disentangling the effects of local resources, landscape heterogeneity and climatic seasonality on bee diversity and plant-pollinator networks in tropical highlands. Oecologia, 194, 333–344. https://doi.org/10.1007/s00442-020-04715-8

Fischer, J., & Lindenmayer, D. B. (2002). Treating the nestedness temperature calculator as a black box can lead to false conclusions. Oikos, 99, 193–199. https://doi.org/10.1034/j.1600-0706.2002.990121.x

Franch-Pardo, I., & Cancer-Pomar, L. (2017). El componente visual en la cartografía del paisaje. Aptitud paisajística para la protección en la cuenca del río Chiquito (Morelia, Michoacán). Investigaciones Geográficas, Boletín del Instituto de Geografía, 93, 42–60. https://doi.org/10.14350/rig.54730

Fründ, J. (2021). Dissimilarity of species interaction networks: how to partition rewiring and species turnover components. Ecosphere, 12, e03653. https://doi.org/10.1002/ecs2.3653

Gaston, K. J. (1996). Biodiversity-latitudinal gradients. Progress in Physical Geography, 20, 466–476. https://doi.org/10.1177/030913339602000406

Gotelli, N. J. (2001). Research frontiers in null model analysis. Global Ecology and Biogeography, 10, 337–343. https://doi.org/10.1046/j.1466-822X.2001.00249.x

Goulson, D. (1999). Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspectives in Plant Ecology, Evolution and Systematics, 2, 185–209. https://doi.org/10.1078/1433-8319-00070

Guzman, L. M., Chamberlain, S. A., & Elle, E. (2021). Network robustness and structure depend on the phenological characteristics of plants and pollinators. Ecology and Evolution, 11, 13321–13334. https://doi.org/10.1002/ece3.8055

Hegland, S. J., & Boeke, L. (2006). Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecological Entomology, 31, 532–538. https://doi.org/10.1111/j.1365-2311.2006.00812.x

Hernández-Villa, V., Vibrans, H., Uscanga-Mortera, E., & Aguirre-Jaimes, A. (2020). Floral visitors and pollinator dependence are related to floral display size and plant height in native weeds of central Mexico. Flora, 262, 151505. https://doi.org/10.1016/j.flora.2019.151505

Jordano, P. (2016). Sampling networks of ecological interactions. Functional Ecology, 30, 1883–1893. https://doi.org/10.1111/1365-2435.12763

Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant–animal interactions. Ecology Letters, 6, 69–81. https://doi.org/10.1046/j.1461-0248.2003.00403.x

Jordano, P., Vázquez, D., & Bascompte, J. (2009). Redes complejas de interacciones planta-animal. En R. Medel, M. A. Aizen, & R. Zamora (Eds.), Ecología y evolución de interacciones planta-animal (pp. 17–41). Santiago, Chile: Editorial Universitaria.

Kaiser-Bunbury, C. N., & Blüthgen, N. (2015). Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB Plants, 7, 1–15. https://doi.org/10.1093/aobpla/plv076

Kevan, P. G., & Baker, H. G. (1983). Insects as flower visitors and pollinators. Annual review of entomology, 28, 407–453. https://doi.org/10.1146/annurev.en.28.010183.002203

López-Segoviano, G., Arenas-Navarro, M., Vega, E., & Arizmendi, M. C. (2018). Hummingbird migration and flowering synchrony in the temperate forests of northwestern Mexico. PeerJ, 6, e5131. https://doi.org/10.7717/peerj.5131

Medina, C. (2000). Flora del río chiquito, Morelia, Michoacán, México. Chicago: Environmental and Conservation Programs.

Michener, C. D. (2000). The bees of the world. Baltimore, MD: JHU Press.

Morales-Garza, M. R., Arizmendi, M. C., Campos, J. E., Martínez-García, M., & Valiente-Banuet, A. (2007). Evidences on the migratory movements of the nectar-feeding bat Leptonycteris curasoae in Mexico using random amplified polymorphic DNA (RAPD). Journal of Arid Environments, 68, 248–259. https://doi.org/10.1016/j.jaridenv.2006.05.009

Morente-López, J., Lara-Romero, C., Ornosa, C., & Iriondo, J. M. (2018). Phenology drives species interactions and modularity in a plant-flower visitor network. Scientific Reports, 8, 1–11. https://doi.org/10.1038/s41598-018-27725-2

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B. et al. (2013). Package ‘vegan’. Community Ecology Package, Version, 2, 1–295.

Olesen, J. M., Bascompte, J., Dupont, Y. L., Elberling, H., Rasmussen, C., & Jordano, P. (2011). Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B: Biological Sciences, 278, 725–732. https://doi.org/10.1098/rspb.2010.1371

Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences, 104, 19891–19896. https://doi.org/10.1073/pnas.0706375104

Olesen, J. M., & Jordano, P. (2002). Geographic patterns in plant–pollinator mutualistic networks. Ecology, 83, 2416–2424. https://doi.org/10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x

Petanidou, T., Kallimanis, A. S., Lazarina, M., Tscheulin, T., Devalez, J., Stefanaki, A. et al. (2018). Climate drives plant–pollinator interactions even along small‐scale climate gradients: the case of the Aegean. Plant Biology, 20, 176–183. https://doi.org/10.1111/plb.12593

Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P., & Pantis, J. D. (2008). Long‐term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecology Letters, 11, 564–575. https://doi.org/10.1111/j.1461-0248.2008.01170.x

Poisot, T. (2022). Dissimilarity of species interaction networks: quantifying the effect of turnover and rewiring. Peer Community Journal, 2, 335. https://doi.org/10.24072/pcjournal.105

Poisot, T., Canard, E., Mouillot, D., Mouquet, N., & Gravel, D. (2012). The dissimilarity of species interaction networks. Ecology Letters, 15, 1353–1361.

https://doi.org/10.24072/pcjournal.105

Poisot, T., Stouffer, D. B., & Gravel, D. (2015). Beyond species: why ecological interaction networks vary through space and time. Oikos, 124, 243–251. https://doi.org/10.1111/oik.01719

Rabeling, S. C., Lim, J. L., Tidon, R., Neff, J. L., Simpson, B. B., & Pawar, S. (2019). Seasonal variation of a plant-pollinator network in the Brazilian Cerrado: implications for community structure and robustness. Plos One, 14, e0224997. https://doi.org/10.1371/journal.pone.0224997

Ramírez, N. (2006). Temporal variation of pollination classes in a tropical Venezuelan plain: the importance of habitats and life forms. Botany, 84, 443–452. https://doi.org/10.1139/b06-015

Ramos-Jiliberto, R., Albornoz, A. A., Valdovinos, F. S., Smith-Ramírez, C., Arim, M., Armesto, J. J. et al. (2009). A network analysis of plant-pollinator interactions in temperate rain forests of Chiloé Island, Chile. Oecologia, 160, 697–706. https://doi.org/10.1007/s00442-009-1344-7

Rasmussen, C., Dupont, Y. L., Mosbacher, J. B., Trøjelsgaard, K., & Olesen, J. M. (2013). Strong impact of temporal resolution on the structure of an ecological network. Plos One, 8, e81694. https://doi.org/10.1371/journal.pone.0081694

Robinson, S. V., Losapio, G., & Henry, G. H. (2018). Flower-power: Flower diversity is a stronger predictor of network structure than insect diversity in an Arctic plant–pollinator network. Ecological Complexity, 36, 1–6. https://doi.org/10.1016/j.ecocom.2018.04.005

Rosas‐Guerrero, V., Aguilar, R., Martén‐Rodríguez, S., Ashworth, L., Lopezaraiza‐Mikel, M., Bastida, J. M. et al. (2014). A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecology Letters, 17, 388–400. https://doi.org/10.1111/ele.12224

Schwarz, B., Vázquez, D. P., CaraDonna, P. J., Knight, T. M., Benadi, G., Dormann, C. F. et al. (2020). Temporal scale‐dependence of plant-pollinator networks. Oikos, 129, 1289–1302. https://doi.org/10.1111/oik.07303

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D. et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

Soares, R. G. S., Ferreira, P. A., & Lopes, L. E. (2017). Can plant-pollinator network metrics indicate environmental quality? Ecological Indicators, 78, 361–370. https://doi.org/10.1016/j.ecolind.2017.03.037

Souza, C. S., Maruyama, P. K., Aoki, C., Sigrist, M. R., Raizer, J., Gross, C. L. et al. (2018). Temporal variation in plant–pollinator networks from seasonal tropical environments: higher specialization when resources are scarce. Journal of Ecology, 106, 2409–2420. https://doi.org/10.1111/1365-2745.12978

Spiesman, B. J., & Inouye, B. D. (2013). Habitat loss alters the architecture of plant–pollinator interaction networks. Ecology, 94, 2688–2696. https://doi.org/10.1890/13-0977.1

Tavera, A. (2021). Caracterización de la red de interacciones planta-visitante floral de la comunidad de Agua Zarca, San Miguel del Monte (Bachelor Thesis). Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.

Traveset, A., Tur, C., Trøjelsgaard, K., Heleno, R., Castro‐Urgal, R., & Olesen, J. M. (2016). Global patterns of mainland and insular pollination networks. Global Ecology and Biogeography, 25, 880–890. https://doi.org/10.1111/geb.12362

Triplehorn, A. C., & Johnson, F. N. (2005). Borror and Delong´s introduction to the study of insects, 7th edition. Florence, KY: Thomson Brooks/Cole.

Valido, A., Rodríguez-Rodríguez, M. C., & Jordano, P. (2019). Honeybees disrupt the structure and functionality of plant-pollinator networks. Scientific Reports, 9, 1–11. https://doi.org/10.1038/s41598-019-41271-5

Vizentin-Bugoni, J., Maruyama, P. K., de Souza, C. S., Ollerton, J., Rech, A. R., & Sazima, M. (2018). Plant-pollinator networks in the tropics: a review. In W. Dáttilo, & V. Rico-Gray (Eds.), Ecological networks in the tropics (pp. 73–91). Springer, Cham. https://doi.org/10.1007/978-3-319-68228-0_6

Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273–309. https://doi.org/10.1146/annurev.ecolsys.34.012103.144032

Downloads

Additional Files

Published

2023-10-03