Redes tróficas como herramienta para el estudio de la diversidad y complejidad de ecosistemas

Autores/as

  • Luis Gerardo Abarca-Arenas Universidad veracruzana https://orcid.org/0000-0001-6154-7788
  • Elizabeth Valero-Pacheco Universidad Veracruzana
  • Christian A. Delfín-Alfonso Universidad Veracruzana
  • Eduardo Morteo-Ortiz Universidad Veracruzana
  • Jonathan Franco-López Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.22201/ib.20078706e.2022.93.4126

Palabras clave:

Interacciones de especies, Topología de redes, Ascendencia, Métodos cuantitativos

Resumen

Considerando el creciente deterioro del medio ambiente y los efectos nocivos que alteran la riqueza de especies, es importante encontrar la metodología adecuada para el estudio de la diversidad y su manejo. La presente revisión presenta una breve reseña histórica del análisis de redes tróficas, los distintos tipos y métodos de análisis de éstas. Las redes no ponderadas, aunque sencillas en su construcción, representan aspectos estructurales y de diversidad de manera cuantitativa. Las redes ponderadas tienen la ventaja de conocer el flujo de materia entre las especies, sin embargo, la cantidad y calidad de datos necesarios es muy grande y difícil de obtener. Las redes bipartitas, que pueden ser ponderadas o no, son un caso especial útil en estudios de biogeografía o parasitismo. Para los 3 tipos de redes es posible medir características como riqueza de especies, diversidad de flujos y especies, entre otros índices topológicos de las redes útiles para la toma de decisiones en el manejo de los sistemas ecológicos.

Biografía del autor/a

Luis Gerardo Abarca-Arenas, Universidad veracruzana

Instituto de Investigaciones Biológicas

Citas

Abarca-Arenas, L. G., Franco-Lopez, J., Peterson, M. S., Brown-Peterson, N. J. y Valero-Pacheco, E. (2007). Sociometric analysis of the role of penaeids in the continental shelf food web off Veracruz, Mexico based on by-catch. Fisheries Research, 87, 46–57. https://doi.org/10.1016/j.fishres.2007.06.019

Abarca-Arenas, L. G. y Ulanowicz, R. E. (2002). The effects of taxonomic aggregation on network analysis. Ecological Modelling, 149, 285–296. https://doi.org/10.1016/S0304-3800(01)00474-4

Abdala‐Roberts, L., Puentes, A., Finke, D. L., Marquis, R. J., Montserrat, M., Poelman, E. H. (2019). Tri‐trophic interactions: Bridging species, communities and ecosystems. Ecology Letters, 22, 2151–2167. https://doi.org/10.1111/ele.13392

Abrams, P. A., Menge, B. A., Mittelbach, G. G., Spiller, D. A. y Yodzis, P. (1996). The role of indirect effects in food webs. En G. A. Polis y K. O. Winemiller (Eds.), Food webs (pp. 371–395). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-7007-3_36

Albert, R., Jeong, H. y Barabási, A. L. (2000). Error and attack tolerance of complex networks. Nature, 406, 378–382. https://doi.org/10.1038/35019019

Alcorlo, P. (2004). Las redes tróficas en las lagunas salinas temporales de Los Monegros (Zaragoza, España). Ecosistemas, 13, 37–51.

Allesina, S., Alonso, D., & Pascual, M. (2008). A general model for food web structure. Science, 320, 658–661. https://doi.org/10.1126/science.1156269

Allhoff, K. T., Ritterskamp, D., Rall, B. C., Drossel, B. y Guill, C. (2015). Evolutionary food web model based on body masses gives realistic networks with permanent species turnover. Scientific Reports, 5, 10955. https://doi.org/10.1038/srep10955

Arim, M. y Marquet, P. A. (2004). Intraguild predation: a widespread interaction related to species biology: intraguild predation. Ecology Letters, 7, 557–564. https://doi.org/10.1111/j.1461-0248.2004.00613.x

Arreguín-Sánchez, F. (2014). Measuring resilience in aquatic trophic networks from supply-demand-of-energy relationships. Ecological Modelling, 272, 271–276. https://doi.org/10.1016/j.ecolmodel.2013.10.018

Barabási, A. L. (2002). Linked: The new science of networks. Cambridge, MA: Perseus Publishing.

Borgatti, S. P., Mehra, A., Brass, D. J. y Labianca, G. (2009). Network analysis in the Social Sciences. Science, 323, 892–895. https://doi.org/10.1126/science.1165821

Brose, U., Ostling, A., Harrison, K. y Martinez, N. D. (2004). Unified spatial scaling of species and their trophic interactions. Nature, 428, 167–171. https://doi.org/10.1038/nature02297

Camacho, J., Stouffer, D. B. y Amaral, L. A. N. (2007). Quantitative analysis of the local structure of food webs. Journal of Theoretical Biology, 246, 260–268. https://doi.org/10.1016/j.jtbi.2006.12.036

Cattin, M. F., Bersier, L. F., Banašek-Richter, C., Baltensperger, R. y Gabriel, J. P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835–839. https://doi.org/10.1038/nature02327

Cirtwill, A. R., Dalla-Riva, G. V., Gaiarsa, M. P., Bimler, M. D., Cagua, E. F., Coux, C. et al. (2018). A review of species role concepts in food webs. Food Webs, 16, e00093. https://doi.org/10.1016/j.fooweb.2018.e00093

Cohen, J. E. (1978). Food webs and niche space. Princeton, NJ: Princeton University Press. https://doi.org/10.2307/j.ctvx5wc04

Cohen, J. E., Briand, F. y Newman, C. M. (1990). Community food webs: data and theory. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-83784-5

Cohen, J. E., Jonsson, T. y Carpenter, S. R. (2003). Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences, 100, 1781–1786. https://doi.org/10.1073/pnas.232715699

Cohen, J. E., Newman, C. M. y Steele, J. H. (1985). A stochastic theory of community food webs I. Models and aggregated data. Proceedings of the Royal Society of London, 224, 421–448. https://doi.org/10.1098/rspb.1985.0042

DeAngelis, D. L. y Gross, L. J. (Eds.). (2018). Individual-based models and approaches in ecology: populations, communities, and ecosystems. New York: Chapman and Hall.

Digel, C., Curtsdotter, A., Riede, J., Klarner, B. y Brose, U. (2014). Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos, 123, 1157–1172. https://doi.org/10.1111/oik.00865

Dunne, J. A. y Williams, R. J. (2009). Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B, 364, 1711–1723. https://doi.org/10.1098/rstb.2008.0219

Dunne, J. A., Williams, R. J. y Martínez, N. D. (2002). Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences, 99, 12917–12922. https://doi.org/10.1073/pnas.192407699

Erdös, P. y Rényi, A. (1959). On random graphs I. Publicationes Mathematicae Debrecen, 6, 290–297.

Fath, B. D. y Patten, B. C. (1998). Network synergism: Emergence of positive relations in ecological systems. Ecological Modelling, 107, 127–143. https://doi.org/10.1016/S0304-3800(97)00213-5

Fox-Keller, E. (2007). A clash of two cultures. Nature, 445, 603–603. https://doi.org/10.1038/445603a

Gallopín, G. C. (1989). A unified concept of the ecological niche. International Journal of General Systems, 15, 59–73. https://doi.org/10.1080/03081078908935030

Hall, S. J. y Raffaelli, D. (1991). Food-web patterns: lessons from a species-rich web. Journal of Animal Ecology, 60, 823–841.

Ibarra-García, E. C., Abarca-Arenas, L. G., Ortiz, M. y Rodríguez-Zaragoza, F. A. (2020). Impact of hurricane Dean on Chinchorro Bank coral reef (Western Caribbean): Temporal variation in the food web structure. Ecological Indicators, 118, 106712. https://doi.org/10.1016/j.ecolind.2020.106712

Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F. et al. (2009). Ecological networks —beyond food webs. The Journal of Animal Ecology, 78, 253–269. https://doi.org/10.1111/j.1365-2656.2008.01460.x

Jordán, F. (2009). Keystone species and food webs. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 1733–1741. https://doi.org/10.1098/rstb.2008.0335

Jordán, F., Benedek, Z. y Podani, J. (2007). Quantifying positional importance in food webs: a comparison of centrality indices. Ecological Modelling, 205, 270–275. https://doi.org/10.1016/j.ecolmodel.2007.02.032

Jordán, F. y Scheuring, I. (2004). Network ecology: topological constraints on ecosystem dynamics. Physics of Life Reviews, 1, 139–172. https://doi.org/10.1016/j.plrev.2004.08.001

Kluger, L. C., Taylor, M. H., Mendo, J., Tam, J. y Wolff, M. (2016). Carrying capacity simulations as a tool for ecosystem-based management of a scallop aquaculture system. Ecological Modelling, 331, 44–55. https://doi.org/10.1016/j.ecolmodel.2015.09.002

Koehn, L. E., Essington, T. E., Marshall, K. N., Kaplan, I. C., Sydeman, W. J., Szoboszlai, A. I. et al. (2016). Developing a high taxonomic resolution food web model to assess the functional role of forage fish in the California current ecosystem. Ecological Modelling, 335, 87–100. https://doi.org/10.1016/j.ecolmodel.2016.05.010

Kolesnikov, V., Anikin, V., Mosolova, E., Faizliev, A., Mironov, S., Zemlyanskaya, M. et al. (2019). Food Chain Analysis Based on Graph Centrality Indicators. Journal of Physics: Conference Series, 1334, 012004. https://doi.org/10.1088/1742-6596/1334/1/012004

Lafferty, K. D. y Dunne, J. A. (2010). Stochastic ecological network occupancy (SENO) models: A new tool for modeling ecological networks across spatial scales. Theoretical Ecology, 3, 123–135. https://doi.org/10.1007/s12080-010-0082-0

Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J. y Ellison, A. M. (2017). Ecological network metrics: Opportunities for synthesis. Ecosphere, 8, e01900. https://doi.org/10.1002/ecs2.1900

Leontief, W. W. (1936). Quantitative input and output relations in the economic systems of the United States. The Review of Economics and Statistics, 18, 105–125. https://doi.org/10.2307/1927837

Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Bulletin of Mathematical Biology, 53, 167–191.

Martinez, N. D. (1991). Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecological Monographs, 61, 367–392. https://doi.org/10.2307/2937047

Martinez, N. D. (1992). Constant connectance in community food webs. The American Naturalist, 139, 1208–1218.

Martinez, N. D. (1993). Effects of resolution on food web structure. Oikos, 66, 403–412. https://doi.org/10.2307/3544934

Massol, F., Dubart, M., Calcagno, V., Cazelles, K., Jacquet, C., Kéfi, S. et al. (2017). Island biogeography of food webs. En D. A. Bohan, A. J. Dumbrell, y F. Massol (Eds.), Advances in ecological research. Vol. 56 (pp. 183–262). London: Academic Press. https://doi.org/10.1016/bs.aecr.2016.10.004

May, R. M. (1972). Will a large complex system be stable? Nature, 238, 413–414. https://doi.org/10.1038/238413a0

May, R. M. (1974). Stability and complexity in model ecosystems. Princeton: Princeton University Press. https://doi.org/10.2307/j.ctvs32rq4

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256. https://doi.org/10.1137/s003614450342480

Nielsen, S. N. y Ulanowicz, R. E. (2000). On the consistency between thermodynamical and network approaches to ecosystems. Ecological Modelling, 132, 23–31. https://doi.org/10.1016/S0304-3800(00)00302-1

Nogues, Q., Raoux, A., Araignous, E., Chaalali, A., Hattab, T., Leroy, B. et al. (2021). Cumulative effects of marine renewable energy and climate change on ecosystem properties: Sensitivity of ecological network analysis. Ecological Indicators, 121, 107128. https://doi.org/10.1016/j.ecolind.2020.107128

Ocampo-Reinaldo, M., Milessi, A. C., Romero, M. A., Crespo, E., Wolff, M. y González, R. A. (2016). Assessing the effects of demersal fishing and conservation strategies of marine mammals over a Patagonian food web. Ecopath 30 years - Modelling ecosystem dynamics: beyond boundaries with EwE. Ecological Modelling, 331, 31–43. https://doi.org/10.1016/j.ecolmodel.2015.10.025

Olivier, P. y Planque, B. (2017). Complexity and structural properties of food webs in the Barents Sea. Oikos, 126, 1339–1346. https://doi.org/10.1111/oik.04138

Opsahl, T., Agneessens, F. y Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32, 245–251. https://doi.org/10.1016/j.socnet.2010.03.006

Patonai, K. y Jordán, F. (2017). Aggregation of incomplete food web data may help to suggest sampling strategies. Ecological Modelling, 352, 77–89. https://doi.org/10.1016/j.ecolmodel.2017.02.024

Patten, B. C. (1978). Systems approach to the concept of environment. The Ohio Journal of Science, 78, 206–222.

Patten, B. C. (1985). Energy cycling in the ecosystem. Ecological Modelling, 28, 1–71. https://doi.org/10.1016/0304-3800(85)90013-4

Patten, B. C. y Odum, E. P. (1981). The cybernetic nature of ecosystems. The American Naturalist, 118, 886–895. https://doi.org/10.1086/283881

Pimm, S. L. (1979). The structure of food webs. Theoretical Population Biology, 16, 144–158. https://doi.org/10.1016/0040-5809(79)90010-8

Pimm, S. L. (1982). Food webs. New York: Chapman and Hall.

Pimm, S. L. y Lawton, J. H. (1978). On feeding on more than one trophic level. Nature, 275, 542–544. https://doi.org/10.1038/275542a0

Polovina, J. J. (1984). Model of a coral reef ecosystem. Coral Reefs, 3, 1–11. https://doi.org/10.1007/BF00306135

Post, D. M. (2002). The long and short of food-chain length. Trends in Ecology & Evolution, 17, 269–277. https://doi.org/10.1016/S0169-5347(02)02455-2

Pringle, R. M. (2020). Untangling food webs. En A. Dobson, D. Tilman y R. D. Holt (Eds.), Unsolved problems in Ecology (pp. 225–238). Princeton: Princeton University Press. https://doi.org/doi:10.1515/9780691195322-020

Riede, J. O., Rall, B. C., Banasek-Richter, C., Navarrete, S. A., Wieters, E. A., Emmerson, M. C. et al. (2010). Chapter 3— Scaling of food-web properties with diversity and complexity across ecosystems. En G. Woodward (Ed.), Advances in ecological research. Vol. 42 (pp. 139–170). London: Academic Press.

https://doi.org/10.1016/B978-0-12-381363-3.00003-4

Rohr, R. P., Naisbit, R. E., Mazza, C. y Bersier, L. F. (2016). Matching–centrality decomposition and the forecasting of new links in networks. Proceedings of the Royal Society B, 283, 20152702. https://doi.org/10.1098/rspb.2015.2702

Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. y Hertog, R. (2007). Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society B, 274, 2077–2086. https://doi.org/10.1098/rspb.2007.0515

Scharler, U. M., Ulanowicz, R. E., Fogel, M. L., Wooller, M. J., Jacobson-Meyers, M. E., Lovelock, C. E. et al. (2015). Variable nutrient stoichiometry (carbon:nitrogen: phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system. Oecologia, 179, 863–876. https://doi.org/10.1007/s00442-015-3379-2

Shanafelt, D. W. y Loreau, M. (2018). Stability trophic cascades in food chains. Royal Society Open Science, 5, 180995. https://doi.org/10.1098/rsos.180995

Sinclair, A. R. E., Pech, R. P., Dickman, C. R., Hik, D., Mahon, P. y Newsome, A. E. (1998). Predicting effects of predation on conservation of endangered prey. Conservation Biology, 12, 564–575.

Smit, K. P., Bernard, A. T. F., Lombard, A. T. y Sink, K. J. (2021). Assessing marine ecosystem condition: A review to support indicator choice and framework development. Ecological Indicators, 121, 107148. https://doi.org/10.1016/j.ecolind.2020.107148

Stouffer, D. B., Camacho, J., Guimerà, R., Ng, C. A. y Nunes Amaral, L. A. (2005). Quantitative patterns in the structure of model and empirical food webs. Ecology, 86, 1301–1311.

Sugihara, G., Bersier, L. F. y Schoenly, K. (1997). Effects of taxonomic and trophic aggregation on food web properties. Oecologia, 112, 272–284.

Sugihara, G., Schoenly, K. y Trombla, A. (1989). Scale invariance in food web properties. Science, 245, 48–52. https://doi.org/10.1126/science.2740915

Tomczak, M. T., Heymans, J. J., Yletyinen, J., Niiranen, S., Otto, S. A. y Blenckner, T. (2013). Ecological Network Indicators of Ecosystem Status and Change in the Baltic Sea. Plos One, 8, e75439. https://doi.org/10.1371/journal.pone.0075439

Trifonova, N., Kenny, A., Maxwell, D., Duplisea, D., Fernandes, J. y Tucker, A. (2015). Spatio-temporal Bayesian network models with latent variables for revealing trophic dynamics and functional networks in fisheries ecology. Ecological Informatics, 30, 142–158. https://doi.org/10.1016/j.ecoinf.2015.10.003

Turney, S. y Buddle, C. M. (2016). Pyramids of species richness: the determinants and distribution of species diversity across trophic levels. Oikos, 125, 1224–1232. https://doi.org/10.1111/oik.03404

Ulanowicz, R. E. (1986). Growth and development: ecosystems phenomenology. New York: Springer.

Ulanowicz, R. E. (2009). The dual nature of ecosystem dynamics. Ecological Modelling, 220, 1886–1892. https://doi.org/10.1016/j.ecolmodel.2009.04.015

Ulanowicz, R. E. y Abarca-Arenas, L. G. (1997). An informational synthesis of ecosystem structure and function. Ecological Modelling, 95, 1–10. https://doi.org/10.1016/S0304-3800(96)00032-4

Ulanowicz, R. E. y Baird, D. (1999). Nutrient controls on ecosystem dynamics: The Chesapeake mesohaline community. Journal of Marine Systems, 19, 159–172. https://doi.org/10.1016/S0924-7963(98)90017-3

Ulanowicz, R. E. y Norden, J. S. (1990). Symmetrical overhead in flow networks. International Journal of Systems Science, 21, 429–437. https://doi.org/10.1080/00207729008910372

Ulanowicz, R. E. y Puccia, C. J. (1990). Mixed trophic impacts ecosystems. Coenoses, 5, 7–16.

Vermaat, J. E., Dunne, J. A. y Gilbert, A. J. (2009). Major dimensions in food-web structure properties. Ecology, 90, 278–282. https://doi.org/10.1890/07-0978.1

Wasserman, S. y Faust, K. (1994). Social network analysis: methods and applications. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511815478

Williams, R. J. y Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404, 180–183. https://doi.org/10.1038/35004572

Williams, R. J. y Martinez, N. D. (2004). Limits to trophic levels and omnivory in complex food webs: theory and data. The American Naturalist, 163, 458–468. https://doi.org/10.1086/381964

Yen, J. D. L., Cabral, R. B., Cantor, M., Hatton, I., Kortsch, S., Patrício, J. et al. (2016). Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures. Journal of Animal Ecology, 85, 537–547. https://doi.org/10.1111/1365-2656.12484

Yin, J., Xu, J., Xue, Y., Xu, B., Zhang, C., Li, Y. et al. (2021). Evaluating the impacts of El Niño events on a marine bay ecosystem based on selected ecological network indicators. Science of The Total Environment, 763, 144205. https://doi.org/10.1016/j.scitotenv.2020.144205

Zhao, L., Zhang, H., O’Gorman, E. J., Tian, W., Ma, A., Moore, J. C. et al. (2016). Weighting and indirect effects identify keystone species in food webs. Ecology Letters, 19, 1032–1040. https://doi.org/10.1111/ele.12638

Descargas

Publicado

2022-12-08

Número

Sección

ARTÍCULOS DE REVISIÓN