Endemism areas of Ecuador: an analysis based on distributional data of species of plants, animals and fungi
DOI:
https://doi.org/10.22201/ib.20078706e.2022.93.4031Keywords:
Bigdata, Biogeography, Natural Protected Areas, Tracheophyta, ChordataAbstract
From 4 biodiversity repositories (GBIF, NHM, SpeciesLink, and BNDB), 407,570 occurrence records for 10,390 species of plants, animals, and fungi were analyzed to support the identification of areas for conservation and
biogeographic studies in Ecuador. The species were assigned to 1,773 higher taxonomic groups to assess the support of endemic areas (EAs). The identification of EAs were carried out in VNDM/NDM using two cell sizes (0.75° and 1° latitude-longitude), and the sets were summarized by mean of consensus; 272 and 88 EAs, in 0.75° and 1°, were obtained, respectively; these sets were included in 94 and 28 consensus EAs, respectively. Most consensus EAs were mainly supported by Tracheophyta and Chordata species, and only 1 set in the Galapagos by Chordata, followed by Tracheophyta, Arthropoda, and Mollusca. Four sets included higher endemic taxa, mainly genera. Some species were included in the IUCN Red List, mainly in the categories of Least Concern and Vulnerable. The results of EAs in Ecuador will serve as the basis for studies on conservation and definitions of biogeographic categories and will show the importance of open biodiversity databases.
References
Aagesen, L., Szumik, C. y Goloboff, P. A. (2013). Consensus in the search for areas of endemism. Journal of Biogeography, 40, 2011–2016. https://doi.org/10.1111/jbi.12172
Bisconti, M., Landini, W., Bianucci, G., Cantalamessa, G., Carnevale, G., Ragaini, L. et al. (2001). Biogeographic relationships of the Galapagos terrestrial biota: parsimony analyses of endemicity based on reptiles, land birds and Scalesia land plants. Journal of Biogeography, 28, 495–510. https://doi.org/10.1046/j.1365-2699.2001.00548.x
BNDB SISBIO (Base de Datos y Sistema de Biodiversidad del Ecuador). (2021). Recuperado el 19 de marzo, 2021 de: http://bndb.sisbioecuador.bio/bndb/index.php
Canhos D. A. L., Sousa-Baena, M. S., de Souza, S., Maia, L. C., Stehmann, J. R., Canhos, V. P. et al. (2015). The Importance of Biodiversity E-infrastructures for Megadiverse Countries. PloS One Biology, 13, e1002204. https://doi.org/10.1371/journal.pbio.1002204
Cuesta, F., Peralvo, M., Merino-Viteri, A., Bustamante, M., Baquero, F., Freile, J. F. et al. (2017). Priority areas for biodiversity conservation in mainland Ecuador. Neotropical Biodiversity, 3, 93–106. https://doi.org/10.1080/23766808.2017.1295705
Del Ventura, F., Liria, J. y Navarro, J. C. (2013). Determinación de áreas de endemismo en mosquitos (Diptera: Culicidae) en Venezuela, mediante criterios explícitos de optimización. Boletín de Malariología y Salud Ambiental, 53, 165–182.
Díaz-Acevedo, C. J., Romero-Alarcón, L. V. y Miranda-Esquivel, D. R. (2020). Páramos neotropicales como unidades biogeográficas. Revista de Biología Tropical, 68, 503–516. http://dx.doi.org/10.15517/rbt.v68i2.39347
Duellman, W. E., Marion, A. B. y Hedges, B. (2016). Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae). Zootaxa, 4104, 1–109. https://doi.org/10.11646/zootaxa.4104.1.1
Endara, L., Williams, N. y León-Yánez, S. (2009). Patrones de endemismo de orquídeas endémicas ecuatorianas: perspectivas y prioridades para la conservación. En A. M. Pridgeon y J. P. Suárez (Eds.), Proceedings of the Second Scientific Conference on Andean Orchids (pp. 63–70). Loja, Ecuador: Universidad Técnica Particular de Loja.
Fagua, J. C. y Ramsey, R. D. (2019). Geospatial modeling of land cover change in the Chocó-Darien global ecoregion of South America; one of most biodiverse and rainy areas in the world. Plos One, 14, e0211324. https://doi.org/10.1371/journal.pone.0211324
Frost, D. R. (2021). Amphibian species of the World: an online reference. Version 6.1 (16-8-2021). Electronic Database accessible at https://amphibiansoftheworld.amnh.org/index.php American Museum of Natural History, New York, USA. https://doi.org/10.5531/db.vz.0001
García-Roselló, E., Guisande, C., Manjarrés-Hernández, A., González-Dacosta, J., Heine, J., Pelayo-Villamil, P. et al. (2015). Can we derive macroecological patterns from primary Global Biodiversity Information Facility data? Global Ecology and Biogeography, 24, 335–347. https://doi.org/10.1111/geb.12260
GBIF.org (2021). GBIF Occurrence Download. Recuperado el 18 de marzo, 2021 de: https://doi.org/10.15468/dl.w4st8s
Goloboff, P. A. (2016). NDM and VNDM: programs for the identification of areas of endemism, v. 3.1, Program and documentation. Recuperado el 17 de marzo, 2021 de: https://www.lillo.org.ar/phylogeny
Goloboff, P. A., Farris, J. S. y Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x
Gries, C., Gilbert, E. y Franz, N. (2014) Symbiota - A virtual platform for creating voucher-based biodiversity information communities. Biodiversity Data Journal, 2, e1114. https://doi.org/10.3897/BDJ.2.e1114
Hijmans, R. (2012). DIVA-GIS: A free computer program for mapping and geographic data analysis. Recuperado el 15 de marzo, 2021 de: https://www.diva-gis.org/
Hijmans, R., Guarino, L., Cruz, M. y Rojas, E. (2001). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter, 127, 15–19.
Hill, M. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427–432.
Jørgensen, P. M. y León-Yánez, S. (1999). Catalogue of the vascular plants of Ecuador. Monographs in Systematic Botany from the Missouri Botanical Garden, 75, 1–1182.
León-Yánez, S., Valencia, R., Pitman N., Endara, L., Ulloa, C. y Navarrete, H. (2011). Libro rojo de las plantas endémicas del Ecuador, 2ª edición. Quito: Publicaciones del Herbario QCA/ Pontificia Universidad Católica del Ecuador.
Leimbeck, R. M., Valencia, R. y Balslev, H. (2004). Landscape diversity patterns and endemism of Araceae in Ecuador. Biodiversity and Conservation, 13, 1755–1779. https://doi.org/10.1023/B:BIOC.0000029332.91351.7a
Liria, J., Szumik, C. y Goloboff, P. A. (2021). Analysis of endemism of world arthropod distribution data supports biogeographic regions and many established subdivisions. Cladistics, 37, 559–570. https://doi.org/10.1111/cla.12448
Maldonado, C., Molina, C. I., Zizka, A., Persson, C., Taylor, C. M., Alban, J. et al. (2015). Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? Global Ecology and Biogeography, 24, 973–984. https://doi.org/10.1111/geb.12326
MECN (Museo Ecuatoriano de Ciencias Naturales). (2010). Serie Herpetofauna del Ecuador: El Chocó Esmeraldeño. Monografía 5. Museo Ecuatoriano de Ciencias Naturales. Quito, Ecuador.
Ministerio del Ambiente del Ecuador (MAE). (2008). Políticas y Plan Estratégico del Sistema Nacional de Áreas Protegidas del Ecuador 2007-2016. Resumen Ejecutivo. Proyecto GEF; Sistema Nacional de Áreas Protegidas. Quito, Ecuador.
Missouri Botanical Garden (MOBOT.org) (2021). Catalogue of the Vascular Plants of Ecuador. Recuperado el 20 de marzo, 2021 de: http://www.mobot.org/mobot/research/ecuador/welcome.shtml
Morrone, J. J. (2008). Endemism. En S. E. Jørgensen y B. D. Fath (Eds.), Evolutionary Ecology. Vol. 2. Encyclopedia of Ecology. Oxford: Elsevier.
Natural History Museum. (2021). Data Portal query created at 2021-03-18 14:05:21.272175 PID. Recuperado el 18 de marzo, 2021 de: https://doi.org/10.5519/qd.2dohz5o4
Navarro, J. C., Liria, J., Piñango, H. y Barrera, R. (2007). Biogeographic area relationships in Venezuela: A Parsimony analysis of Culicidae-Phytotelmata relationships distributions in National Parks. Zootaxa, 1547, 1–19. https://doi.org/10.11646/zootaxa.1547.1.1
Noguera-Urbano, E. (2017). El endemismo: diferenciación del término, métodos y aplicaciones. Acta Zoológica Mexicana, 33, 89–107.
OpenRefine. (2021). OpenRefine. 3.4. A free, open source, power tool for working with messy data. Recuperado el 19 de marzo, 2021 de: http://www.OpenRefine.org
Pontificia Universidad Católica del Ecuador (PUCE). (2021). BioWeb. Pontificia Universidad Católica del Ecuador. Recuperado el 2 de mayo, 2021 de: https://bioweb.bio/
QGIS Development Team. (2021). QGIS Geographic Information System. Available: Open Source Geospatial Foundation Project. Recuperado el 10 de marzo, 2021 de: http://qgis.osgeo.org
Quijano‐Abril, M. A., Callejas‐Posada, R. y Miranda‐Esquivel, D. R. (2006). Areas of endemism and distribution patterns for Neotropical Piper species (Piperaceae). Journal of Biogeography, 33, 1266–1278. https://doi.org/10.1111/j.1365-2699.2006.01501.x
Reyes-Puig, C., Almendáriz, C. A. y Torres-Carvajal, O. (2017). Diversity, threat, and conservation of reptiles from continental Ecuador. Amphibian & Reptile Conservation, 11, e147.
Sierra, R., Campos, F. y Chamberlain, J. (1999). Áreas prioritarias para la conservación de la biodiversidad en el Ecuador continental: un estudio basado en la biodiversidad de ecosistemas y su ornitofauna. Ministerio del Ambiente, Proyecto Inefan-GEF- BIRF, Ecociencia y Wildlife Conservation Society, Quito.
SNAP (Sistema Nacional de Áreas protegidas del Ecuador). (2020). Categorías de manejo. Recuperado el 19 de marzo, 2021 de: http://areasprotegidas.ambiente.gob.ec/info-snap
SpeciesLink (2021). Rede SpeciesLink. Recuperado el 18 de marzo, 2021 de: http://www.splink.org.br
Szumik, C., Cuezzo, F., Goloboff, P. A. y Chalup, A. (2002). An optimality criterion to determine areas of endemism. Systematics Biology, 51, 806–816. https://doi.org/10.1080/10635150290102483
Szumik, C. y Goloboff, P. A. (2004). Areas of endemism: improved optimality criteria. Systematics Biology, 53, 968–977. https://doi.org/10.1080/10635150490888859
Szumik, C. y Goloboff, P. A. (2015). Higher taxa and the identification of areas of endemism. Cladistics, 31, 1–5. https://doi.org/10.1111/cla.12112
Tye, A., Snell, H., Peck, S. B. y Aderson, H. (2002). Outstanding terrestrial features of the Galapagos Archipelago. En R. Bensted-Smith (Eds.), A biodiversity vision for the Galapagos Islands, Chapter 3 (pp. 12–23). Puerto Ayora, Galapagos: Charles Darwin Foundation.
UICN (Unión Internacional para la Conservación de la Naturaleza). (2021). The IUCN. Red List of Threatened Species. Version 2021-1. Recuperado el 19 de marzo, 2021 de: https://www.IUCN.redlist.org