Hogar en los trópicos: seguimiento estacional del nicho por el vireo verdiamarillo, Vireo flavoviridis, un migrante intratropical

Autores/as

  • Alejandra Ochoa-Gonzále Universidad Nacional Autónoma de México
  • Octavio R. Rojas-Soto Instituto de Ecología, A.C.
  • David A. Prieto-Torres Universidad Nacional Autónoma de México
  • María del Coro Arizmendi Universidad Nacional Autónoma de México
  • Adolfo G. Navarro-Sigüenza Facultad de Ciencias, UNAM https://orcid.org/0000-0003-2652-7719

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.5233

Palabras clave:

Nicho climático, Modelos de nicho ecológico, Evolución de la migración, Migración intratropical, Neotrópico

Resumen

Actualmente, carecemos de información sobre qué condiciones climáticas están rastreando las aves migratorias, especialmente las intratropicales, cuyos movimientos están contenidos entre los trópicos. El vireo verde amarillo Vireo flavoviridis es un migrante intratropical, cuyos patrones de migración permanecen parcialmente documentados e hipotetizamos que rastrea nichos climáticos similares entre las estaciones reproductiva y no reproductiva (tendencia de conservadurismo de nicho en los trópicos). Utilizando registros de presencia de GBIF y capas climáticas mensuales de WorldClim, reconstruimos el nicho ecológico para las temporadas reproductiva y no reproductiva. Usamos un análisis
de superposición de nicho, basado en un enfoque de PCA-env y pruebas de similitud para evaluar la superposición en el nicho climático entre estaciones. Proyectamos esos nichos climáticos en su migración de primavera y otoño para evaluar las condiciones climáticas rastreadas por la especie en los meses de transición. Los modelos revelaron una significativa interpredicción geográfica entre estaciones. Los análisis de similitud mostraron una alta superposición
de nichos entre temporadas. Como era de esperar por la hipótesis del conservadurismo de nicho en los trópicos, el vireo verdiamarillo es un seguidor de nicho. Esta información ayuda a la comprensión de la migración intratropical y futuros planes de conservación.

Citas

Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545. https://doi.org/10.1111/ecog.01132

Allouche, O., Steinitz, O., Rotem, D., Rosenfeld, A., & Kadmon, R. (2008). Incorporating distance constraints into species distribution models. Journal of Applied Ecology, 45, 599–609. https://doi.org/10.1111/j.1365-2664.2007.01445.x

Anderson, R. P. (2012). Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Annals of the New York Academy of Sciences, 1260, 66–80. https://doi.org/10.1111/j.1749-6632.2011.06440.x

Armenteras, D., Espelta, J. M., Rodríguez, N., & Retana, J. (2017). Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980-2010). Global Environmental Change, 46, 139–147. https://doi.org/10.1016/j.gloenvcha.2017.09.002

Barry, J. H., Butler, L. K., Rohwer, S., & Rohwer, V. G. (2009). Documenting molt-migration in Western Kingbird (Tyrannus verticalis) using two measures of collecting effort. The Auk, 126, 260–267. https://doi.org/10.1525/auk.2009.07137

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T. et al. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 22211, 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

Battery, C. J., & Klicka, J. (2017). Cryptic speciation and gene flow in a migratory songbird Species Complex: Insights from the Red-Eyed Vireo (Vireo olivaceus). Molecular Phylogenetics and Evolution, 113, 67–75. https://doi.org/10.1016/j.ympev.2017.05.006

Bell, C. P. (2000). Process in the evolution of bird migration and pattern in avian ecography. Journal of Avian Biology, 31, 258–265. https://doi.org/10.1034/j.1600-048X.2000.310218.x

Berthold, P. (1999). Towards a comprehensive theory for the evolution, control and adaptability of avian migration. Ostrich, 70, 1–11. https://doi.org/10.1080/00306525.1999.9639744

Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

Boyle, W. A. (2008). Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia, 155, 397–403. https://doi.org/10.1007/s00442-007-0897-6

Boyle, W. A. (2017). Altitudinal bird migration in North America. The Auk, 134, 443–465. https://doi.org/10.1642/AUK-16-228.1

Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G. et al. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

Butler, L. K., Donahue, M. G., & Rohwer, S. (2002). Molt-migration in Western Tanagers (Piranga ludoviciana): age effects, aerodynamics, and conservation implications. The Auk, 119, 1010–1023. https://doi.org/10.1093/auk/119.4.1010

Callo, P. A., Morton, E. S., & Stutchbury, B. J. M. (2013). Prolonged spring migration in the Red-Eyed Vireo (Vireo olivaceus). The Auk, 130, 240−246. https://doi.org/10.1525/auk.2013.12213

Chapman, B., Hulthén, K., Wellenreuther, M., Hansson, L. A., Nilsson, J. A., & Brönmark, C. (2014). Patterns of animal migration. In L. A. Hansson, & S. Akesson (Eds.), Animal movement across scales (pp. 11–35). Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199677184.003.0002

Charmantier, A., & Gienapp, P. (2014). Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evolutionary Applications, 7, 15−28. https://doi.org/10.1111/eva.12126

Clements, J. F., Schulenberg, T. S., Iliff, M. J., Billerman, S. M., Fredericks, T. A., Gerbracht, J. A. et al. (2021). The eBird/ Clements checklist of Birds of the World: v2021. Recuperado en junio de 2021 de: https://www.birds.cornell.edu/clementschecklist/download/

Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019). kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7, 1−11. https://doi.org/10.7717/peerj.6281

Cohen, E. B., Auckland, L. D., Marra, P. P., & Hamer, S. A. (2015). Avian migrants facilitate invasions of neotropical ticks and tick-borne pathogens into the United States. Applied and Environmental Microbiology, 81, 8366−8378. https://doi.org/10.1128/AEM.02656-15

Davenport, L., Nole, I., & Carlos, N. (2012). East with the Night: Longitudinal Migration of the Orinoco Goose (Neochen jubata) between Manú National Park, Peru and the Llanos de Moxos, Bolivia. Plos One, 7, e46886. https://doi.org/10.1371/journal.pone.0046886

DeGraaf, R. M., & Rappole, J. H. (1995). Neotropical migratory birds: natural history, distribution, and population change. Ithaca, NY: Cornell University Press.

del Hoyo, J., Elliott, A., & Christie, D. A. (Eds.). (2010). Handbook of the birds of the World alive. Barcelona: Lynx Edicions.

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C. et al. (2016). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774–787. https://doi.org/10.1111/ecog.02671

Dingle, H., & Drake, A. (2007). What is migration? BioScience, 57, 113–121. https://doi.org/10.1641/B570206

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Escalona, M., Prieto-Torres, D., & Rojas-Runjaic, F. J. (2017). Unveiling the geographic distribution of Boana pugnax (Schmidt, 1857) (Anura, Hylidae) in Venezuela: new state records, range extension, and potential distribution. Check List, 13, 671–68. https://doi.org/10.15560/13.5.671

ESRI. (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.

Faaborg, J., Holmes, R. T., Anders, A. D., Bildstein, K. L., Dugger, K. M., Gauthreaux, S. A. et al. (2010a). Recent advances in understanding migration systems of New World land birds. Ecological Monographs, 80, 3–48. https://doi.org/10.1890/09-0395.1

Faaborg, J., Holmes, R. T., Anders, A. D., Bildstein, K. L., Dugger, K. M., Gauthreaux, S. A. et al. (2010b). Conserving migratory land birds in the New World: Do we know enough? Ecological Applications, 20, 398–418. https://doi.org/10.1890/09-0397.1

Feeley, K. J., & Silman, M. R. (2011). The data void in modeling current and future distributions of tropical species. Global Change Biology, 17, 626–630. https://doi.org/10.1111/j.1365-2486.2010.02239.x

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086

Gomez, C., Bayly, N. J., & Rosenberg, K. V. (2013). Seasonal variation in stopover site use: Catharus thrushes and vireos in northern Colombia. Journal of Ornithology, 154, 107–117. https://doi.org/10.1007/s10336-012-0876-5

Gómez, C., Tenorio, E. A., Montoya, P., & Cadena, C. D. (2016). Niche-tracking migrants and niche switching residents: Evolution of climatic niches in New World warblers (Parulidae). Proceedings of the Royal Society, 283,1–9. https://doi.org/10.1098/rspb.2015.2458

Guaraldo, A. C., Kelly, J. F., & Marini, M. A. (2016). Contrasting annual cycles of an intratropical migrant and a tropical resident bird. Journal of Ornithology, 157, 695–705. https://doi.org/10.1007/s10336-016-1327-5

Guevara-Torres, D. R., Salvador, J., Antezana, M., Hernández, F., Chumpitaz, K., & Saravia, P. (2017). Registros de Vireo flavoviridis en la costa central del Perú. Boletín UNOP, 12, 15–19.

Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: insights from biological invasions. Trends in Ecology and Evolution, 29, 260–269. https://doi.org/10.1016/j.tree.2014.02.009

Hayes, F. E. (1995). Definitions for migrant birds: what is a neotropical migrant? The Auk, 112, 521–523. https://doi.org/10.2307/4088747

Heckscher, C. M., Halley, M. R., & Stampul, P. M. (2015). Intratropical migration of a Nearctic-Neotropical migratory songbird (Catharus fuscescens) in South America with implications for migration theory. Journal of Tropical Ecology, 31, 285–289. https://doi.org/10.1017/S0266467415000024

Heckscher, C. M., Taylor, S. M., Fox, J. W., & Afanasyev, V. (2011). Veery (Catharus fuscescens) wintering locations, migratory connectivity, and a revision of its winter range using geolocator technology. The Auk, 128, 531−542. https://doi.org/10.1525/auk.2011.10280

Hijmans, R. J., Bivand, R., van Etten, J., Forner, K., Ooms, J., & Pebesma, E. (2022). Package ‘Terra’. R package version 1.5-21.

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415– 427. http://dx.doi.org/10.1101/SQB.1957.022.01.039

Hutto, R. L. (1995). Can patterns of vegetation change in western Mexico explain population trends in western neotropical migrants? In M. H. Wilson, & S. A. Sader (Eds.), Conservation of neotropical migratory birds in Mexico (pp. 48–58). Orono, Maine: Maine Agricultural and Forest Experiment Station, Miscellaneous Publication.

IUCN (International Union for Conservation of Nature). (2022). The IUCN Red List of Threatened Species. Version 2021-3. Recuperado el 05 de mayo de 2022 de: https://www.iucnredlist.org

Jahn, A. E., Cueto, V. R, Fontana, C. S., Guaraldo, A. C., Levey, D. J., Marra, P. P. et al. (2020). Bird migration within the Neotropics. The Auk, 137, 1–23. https://doi.org/10.1093/auk/ukaa033

Jahn, A. E., Seavy, N. E., Bejarano, V., Guzmán, M. B., Provinciato, I. C. C., Pizo, M. A. et al. (2016). Intra-tropical migration and wintering areas of Fork-tailed Flycatchers (Tyrannus savana) breeding in São Paulo, Brazil. Revista Brasileira de Ornitologia, 24, 116–121. https://doi.org/10.1007/BF03544339

Johnson, M., Sherry, T., Strong, A., & Medori, A. (2005). Migrants in Neotropical bird communities: An assessment of the breeding currency hypothesis. Journal of Animal Ecology, 74, 333–341. https://doi.org/10.1111/j.1365-2656.2005.00928.x

Joseph, L. (1996). Preliminary climatic overview of migration patterns in South American austral migrant passerines. Ecotropica, 2, 185–193.

Joseph, L., Wilke, T., & Alpers, D. (2003). Independent evolution of migration on the South American landscape in a long-distance temperate-tropical migratory bird, Swainson’s flycatcher (Myiarchus swainsoni). Journal of Biogeography, 30, 925–937. https://doi.org/10.1046/j.1365-2699.2003.00841.x

Kaufman Field Guide to Birds of North America. (2005). Originally published (2000) as Kaufman Focus Guide to Birds of North America. Houghton Mifflin Co., Boston.

La Sorte, F. A., Fink, D., Blancher, P. J., Rodewald, A. D., Ruiz-Gutierrez, V., Rosenberg, K. V. et al. (2017). Global change and the distributional dynamics of migratory bird populations wintering in Central America. Global Change Biology, 23, 5284–5296. https://doi.org/10.1111/gcb.13794

Legge, S., Murphy, S., Igag, P., & Mack, A. L. (2004). Territoriality and density of an Australian migrant, the Buff-breasted Paradise Kingfisher, in the New Guinean non-breeding grounds. Austral Ornithology, 104, 15–20. https://doi.org/10.1071/MU03054

Levey, D. J. (1994). Why we should adopt a broader view of neotropical migrants. The Auk, 111, 233–236.

Levey, D. J., & Stiles, F. G. (1992). Evolutionary precursors of long-distance migration: resource availability and movement patterns in Neotropical landbirds. American Naturalist, 140, 447–476. https://doi.org/10.1086/285421

Liu, C., Newell, G., & White, M. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778–789. https://doi.org/10.1111/jbi.12058

MacPherson, M. P., Jahn, A. E., Murphy, M. T., Kim, D. H., Cueto, V. R., Tuero, D. T. et al. (2018). Follow the rain? Environmental drivers of Tyrannus migration across the New World. The Auk, 135, 881–894. https://doi.org/10.1642/AUK-17-209.1

Marcer, A., Chapman, A. D., Wieczorek, J. R., Picó, F., Uribe, F., Waller, J. et al. (2022). Uncertainty matters: ascertaining where specimens in natural history collections come from and its implications for predicting species distributions. Ecography, 2022, e06025. https://doi.org/10.1111/ecog.06025

Martin, T. E., & Finch, D. M. (1995). Ecology and management of neotropical migratory birds: a synthesis and review of critical issues. New York: Oxford University Press.

Martínez-Meyer, E., Peterson, A. T., & Navarro-Sigüenza, A. G. (2004). Evolution of seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae). Proceedings of the Royal Society B, 271, 1151–1157. https://doi.org/10.1098/rspb.2003.2564

Mendes, P., Elias-Velazco, S. J., Alves-de Andrade, A. F., & De Marco, Jr. P. (2020). Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecological Modelling, 43,109180. https://doi.org/10.1016/j.ecolmodel.2020.109180

Merow, C., Smith, M. J., Edwards, Jr. T.C., Guisan, A., Mcmahon, S. M., Normand, S. et al. (2014). What do we gain from simplicity versus complexity in species distribution models? Ecography, 37, 1267–1281. https://doi.org/10.1111/ecog.00845

Milá, B., Smith, T. B., & Wayne, R. K. (2006). Postglacial population expansion drives the evolution of long-distance migration in a songbird. Evolution, 60, 2403–2409. https://doi.org/10.1111/j.0014-3820.2006.tb01875.x

Morton, E. S. (1977). Intratropical migration in the Yellow-Green Vireo and Piratic Flycatcher. The Auk, 94, 97–106.

Murphy, P. C., Guralnick, R. P., Glaubitz, R., Neufeld, D., & Ryan, J. A. (2004). Georeferencing of museum collections: A review of problems and automated tools, and the methodology developed by the Mountain and Plains Spatio-Temporal Database-Informatics Initiative (Mapstedi). Phyloinformatics, 3, 1–29. https://doi.org/10.5281/zenodo.59792

Nakazawa, Y., Peterson, A. T., Martínez-Meyer, E., & Navarro-Sigüenza, A. G. (2004). Seasonal niches of Nearctic-Neotropical migratory birds: implications for the evolution of migration. The Auk, 121, 610–618.

Nava-Bolaños, A., Prieto-Torres, D. A., Osorio-Olvera, L., Soberón, J., Arizmendi, M. C., & Navarro-Sigüenza, A. G. (2023). Critical areas for pollinator conservation in Mexico: A cross-border priority. Biological Conservation, 283, 110119. https://doi.org/10.1016/j.biocon.2023.110119

Navarro-Sigüenza, A. G. (1992). Altitudinal distribution of birds in the Sierra Madre del Sur, Guerrero, Mexico. The Condor, 94, 29–39. https://doi.org/10.2307/1368793

Norris, D. R., & Marra, P. P. (2007). Seasonal interactions, habitat quality, and population dynamics in migratory birds. The Condor, 109, 535–547. https://doi.org/10.1093/condor/109.3.535

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C. et al. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience, 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Owens, H. L. Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J. et al. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011

Peña-Peniche, A., Ruvalcaba-Ortega, I., & Rojas-Soto, O. (2018). Climate complexity in the migratory cycle of Ammodramus bairdii. Plos One, 13, 3(8): e0202678. https://doi.org/10.1371/journal.pone.0202678

Pérez-Navarro, M. A., Broennimann, O., Esteve, M. A., Moya-Pérez, J. M., Carreño, M. F., Guisan, A. & Lloret , F. (2020) Temporal variability is key to modeling the climatic niche. Diversity and Distributions, 27, 473–484. https://doi.org/10.1111/ddi.13207

Peterson, A. T., Komar, N., Komar, O., Navarro-Sigüenza, A. G., Robbins, M. B., & Martínez-Meyer, E. (2004). Priority contribution West Nile Virus in the New World: potential impacts on bird species. Bird Conservation International, 14, 215–232. https://doi.org/10.1017/S0959270904000309

Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Portillo-Quintero, C. A., & Sánchez-Azofeifa, G. A. (2010) Extent and conservation of tropical dry forests in the Americas. Biological Conservation, 143, 144–155. https://doi.org/10.1016/j.biocon.2009.09.020

Prieto-Torres, D. A, Nori, J., & Rojas-Soto, O. R. (2018) Identifying priority conservation areas for birds associated to endangered Neotropical dry forests. Biological Conservation, 228, 205–214. https://doi.org/10.1016/j.biocon.2018.10.025

Prieto-Torres, D. A., & Rojas-Soto, O. R. (2016). Reconstructing the Mexican Tropical Dry Forests via an autoecological niche approach: Reconsidering the ecosystem boundaries. Plos One, 11, e0150932. https://doi.org/10.1371/journal.pone.0150932

Pyle, P., Leitner, W. A., Lozano-Angulo, L., Avilez-Teran, F., Swanson, H., Gómez-Limón, E. et al. (2009). Temporal, spatial, and annual variation in the occurrence of molt-migrant passerines in the Mexican monsoon region. The Condor, 111, 583–590. https://doi.org/10.1525/cond.2009.090085

Qiao, H., Peterson, A. T., Campbell, L. P., Soberón, J., Ji, L., & Escobar, L. E. (2016). NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39, 805–813. https://doi.org/10.1111/ecog.01961

R Core Team. (2017). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rappole, J. (2013). The avian migrant: the biology of bird migration. New York: Columbia University Press. https://doi.org/10.7312/columbia/9780231146784.001.0001

Rohwer, S., Butler, L. K., & Froehlich, D. R. (2005). Ecology and demography of east-west differences in molt scheduling of Neotropical migrant passerines. In R. Greenberg, & P. P. Marra (Eds.), Birds of two worlds: the ecology and evolution of migration, (pp. 87–105). Baltimore: Johns Hopkins University Press.

Roubiceka, A. J., Van Der Wal, J., Beaumont, L. J., Pitmanc, A. J., Wilsona, P., & Hughes, L. (2010). Does the choice of climate baseline matter in ecological niche modelling? Ecological Modelling, 221, 2280–2286. https://doi.org/10.1016/j.ecolmodel.2010.06.021

Salewski, V., & Bruderer, B. (2007). The evolution of bird migration – a synthesis. Naturwissenschaften, 94, 268–279. https://doi.org/10.1007/s00114-006-0186-y

Sánchez-Barradas, A., Santiago-Jiménez, Q. J., & Rojas-Soto, O. (2017). Variación temporal en la distribución geográfica y ecológica de Amazona finschi, Psittaciformes: Psittacidae. Revista Biología Tropical, 65, 1194–1207. http://dx.doi.org/10.15517/rbt.v65i3.25417.

Santillán, V., Quitián, M., Tinoco, B. A., Zárate, E., Schleuning, M., Böhning-Gaese, K. et al. (2018) Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. Plos One, 13, e0196179. https://doi.org/10.1371/journal.pone.0196179

Schoener, T. W. (1968). The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704–726. https://doi.org/10.2307/1935534

Schulenberg, T. S. (2019). Cornell Lab of Ornithology, Ithaca, NY, USA. Neotropical Birds Online: https://birdsoftheworld.org/bow/home [September 15, 2019].

Skutch, A. F. (1960). Life histories of Central American Birds II. Pacific Coast Avifauna, Number 34. Berkeley, California: Cooper Ornithological Society.

Soberón, J. M. (2010). Niche and area of distribution modeling: a population ecology perspective. Ecography, 33, 159–167. http://dx.doi.org/10.1111/j.1600-0587.2009.06074.x

Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10.

Stutchbury, B. J. M., Siddiqui, R., Applegate, K., Hvenegaard, G. T., Mammenga, P., Mickle, N. et al. (2016). Ecological causes and consequences of intratropical migration in temperate-breeding migratory birds. American Naturalist, 188, S28–S40. http://dx.doi.org/10.1086/687531

Styrsky, S. D., Berthold, P., & Robinson, W. D. (2004). Endogenous control of migration and calendar effects in an intratropical migrant, the Yellow-Green Vireo. Animal Behaviour, 67, 1141–1499. https://doi.org/10.1016/j.anbehav.2003.07.012

Tingley, M. W., Monahanc, W. B., Beissingera, S. R., & Moritz, C. (2009). Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences, 106, 19637–19643. https://doi.org/10.1073/pnas.0901562106

Tobón-Sampedro, A., & Rojas-Soto, O. (2015). The geographic and seasonal potential distribution of the little-known Fuertes’s Oriole Icterus fuertesi. Bird Conservation International, 25, 489–502. https://doi.org/10.1017/S0959270914000501

Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 35–342. https://doi.org/10.1890/10-1171.1

Wei, T., & Simko, V. (2017). R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84). https://github.com/taiyun/corrplot

Wiens J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology, and species richness. Trends in Ecology and Evolution, 19, 639–644. https://doi.org/10.1016/j.tree.2004.09.011

Wiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–39. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431

Winger, B. M., Auteri, G. G., Pegan, T. M., & Weeks, B. C. (2019). A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biological Reviews, 94, 737–752. https://doi.org/10.1111/brv.12476

Winger, B. M., Barker, F. K., & Ree, R. H. (2014). Temperate origins of long-distance seasonal migration in New World songbirds. Proceedings of the National Academy of Sciences, 111, 12115–12120. https://doi.org/10.1073/pnas.1405000111

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A. et al. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x

Zink, R. M. (2011). The evolution of avian migration. Biological Journal of the Linnean Society, 104, 237–250. https://doi.org/10.1111/j.1095-8312.2011.01752.x

Zink, R. M., & Gardner, A. S., (2017). Glaciation as a migratory switch. Science Advances, 3, e1603133. https://doi.org/10.1126/sciadv.1603133

Zurell, D., Gallien, L., Graham, C. H., & Zimmermann, N. E. (2018). Do long-distance migratory birds track their niche through seasons? Journal of Biogeography, 45, 1459–1468. https://doi.org/10.1111/jbi.13351

Descargas

Archivos adicionales

Publicado

2023-10-31

Número

Sección

BIOGEOGRAFÍA