Redes tróficas como herramienta para el estudio de la diversidad y complejidad de ecosistemas
DOI:
https://doi.org/10.22201/ib.20078706e.2022.93.4126Palabras clave:
Interacciones de especies, Topología de redes, Ascendencia, Métodos cuantitativosResumen
Considerando el creciente deterioro del medio ambiente y los efectos nocivos que alteran la riqueza de especies, es importante encontrar la metodología adecuada para el estudio de la diversidad y su manejo. La presente revisión presenta una breve reseña histórica del análisis de redes tróficas, los distintos tipos y métodos de análisis de éstas. Las redes no ponderadas, aunque sencillas en su construcción, representan aspectos estructurales y de diversidad de manera cuantitativa. Las redes ponderadas tienen la ventaja de conocer el flujo de materia entre las especies, sin embargo, la cantidad y calidad de datos necesarios es muy grande y difícil de obtener. Las redes bipartitas, que pueden ser ponderadas o no, son un caso especial útil en estudios de biogeografía o parasitismo. Para los 3 tipos de redes es posible medir características como riqueza de especies, diversidad de flujos y especies, entre otros índices topológicos de las redes útiles para la toma de decisiones en el manejo de los sistemas ecológicos.
Citas
Abarca-Arenas, L. G., Franco-Lopez, J., Peterson, M. S., Brown-Peterson, N. J. y Valero-Pacheco, E. (2007). Sociometric analysis of the role of penaeids in the continental shelf food web off Veracruz, Mexico based on by-catch. Fisheries Research, 87, 46–57. https://doi.org/10.1016/j.fishres.2007.06.019
Abarca-Arenas, L. G. y Ulanowicz, R. E. (2002). The effects of taxonomic aggregation on network analysis. Ecological Modelling, 149, 285–296. https://doi.org/10.1016/S0304-3800(01)00474-4
Abdala‐Roberts, L., Puentes, A., Finke, D. L., Marquis, R. J., Montserrat, M., Poelman, E. H. (2019). Tri‐trophic interactions: Bridging species, communities and ecosystems. Ecology Letters, 22, 2151–2167. https://doi.org/10.1111/ele.13392
Abrams, P. A., Menge, B. A., Mittelbach, G. G., Spiller, D. A. y Yodzis, P. (1996). The role of indirect effects in food webs. En G. A. Polis y K. O. Winemiller (Eds.), Food webs (pp. 371–395). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-7007-3_36
Albert, R., Jeong, H. y Barabási, A. L. (2000). Error and attack tolerance of complex networks. Nature, 406, 378–382. https://doi.org/10.1038/35019019
Alcorlo, P. (2004). Las redes tróficas en las lagunas salinas temporales de Los Monegros (Zaragoza, España). Ecosistemas, 13, 37–51.
Allesina, S., Alonso, D., & Pascual, M. (2008). A general model for food web structure. Science, 320, 658–661. https://doi.org/10.1126/science.1156269
Allhoff, K. T., Ritterskamp, D., Rall, B. C., Drossel, B. y Guill, C. (2015). Evolutionary food web model based on body masses gives realistic networks with permanent species turnover. Scientific Reports, 5, 10955. https://doi.org/10.1038/srep10955
Arim, M. y Marquet, P. A. (2004). Intraguild predation: a widespread interaction related to species biology: intraguild predation. Ecology Letters, 7, 557–564. https://doi.org/10.1111/j.1461-0248.2004.00613.x
Arreguín-Sánchez, F. (2014). Measuring resilience in aquatic trophic networks from supply-demand-of-energy relationships. Ecological Modelling, 272, 271–276. https://doi.org/10.1016/j.ecolmodel.2013.10.018
Barabási, A. L. (2002). Linked: The new science of networks. Cambridge, MA: Perseus Publishing.
Borgatti, S. P., Mehra, A., Brass, D. J. y Labianca, G. (2009). Network analysis in the Social Sciences. Science, 323, 892–895. https://doi.org/10.1126/science.1165821
Brose, U., Ostling, A., Harrison, K. y Martinez, N. D. (2004). Unified spatial scaling of species and their trophic interactions. Nature, 428, 167–171. https://doi.org/10.1038/nature02297
Camacho, J., Stouffer, D. B. y Amaral, L. A. N. (2007). Quantitative analysis of the local structure of food webs. Journal of Theoretical Biology, 246, 260–268. https://doi.org/10.1016/j.jtbi.2006.12.036
Cattin, M. F., Bersier, L. F., Banašek-Richter, C., Baltensperger, R. y Gabriel, J. P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835–839. https://doi.org/10.1038/nature02327
Cirtwill, A. R., Dalla-Riva, G. V., Gaiarsa, M. P., Bimler, M. D., Cagua, E. F., Coux, C. et al. (2018). A review of species role concepts in food webs. Food Webs, 16, e00093. https://doi.org/10.1016/j.fooweb.2018.e00093
Cohen, J. E. (1978). Food webs and niche space. Princeton, NJ: Princeton University Press. https://doi.org/10.2307/j.ctvx5wc04
Cohen, J. E., Briand, F. y Newman, C. M. (1990). Community food webs: data and theory. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-83784-5
Cohen, J. E., Jonsson, T. y Carpenter, S. R. (2003). Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences, 100, 1781–1786. https://doi.org/10.1073/pnas.232715699
Cohen, J. E., Newman, C. M. y Steele, J. H. (1985). A stochastic theory of community food webs I. Models and aggregated data. Proceedings of the Royal Society of London, 224, 421–448. https://doi.org/10.1098/rspb.1985.0042
DeAngelis, D. L. y Gross, L. J. (Eds.). (2018). Individual-based models and approaches in ecology: populations, communities, and ecosystems. New York: Chapman and Hall.
Digel, C., Curtsdotter, A., Riede, J., Klarner, B. y Brose, U. (2014). Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos, 123, 1157–1172. https://doi.org/10.1111/oik.00865
Dunne, J. A. y Williams, R. J. (2009). Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B, 364, 1711–1723. https://doi.org/10.1098/rstb.2008.0219
Dunne, J. A., Williams, R. J. y Martínez, N. D. (2002). Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences, 99, 12917–12922. https://doi.org/10.1073/pnas.192407699
Erdös, P. y Rényi, A. (1959). On random graphs I. Publicationes Mathematicae Debrecen, 6, 290–297.
Fath, B. D. y Patten, B. C. (1998). Network synergism: Emergence of positive relations in ecological systems. Ecological Modelling, 107, 127–143. https://doi.org/10.1016/S0304-3800(97)00213-5
Fox-Keller, E. (2007). A clash of two cultures. Nature, 445, 603–603. https://doi.org/10.1038/445603a
Gallopín, G. C. (1989). A unified concept of the ecological niche. International Journal of General Systems, 15, 59–73. https://doi.org/10.1080/03081078908935030
Hall, S. J. y Raffaelli, D. (1991). Food-web patterns: lessons from a species-rich web. Journal of Animal Ecology, 60, 823–841.
Ibarra-García, E. C., Abarca-Arenas, L. G., Ortiz, M. y Rodríguez-Zaragoza, F. A. (2020). Impact of hurricane Dean on Chinchorro Bank coral reef (Western Caribbean): Temporal variation in the food web structure. Ecological Indicators, 118, 106712. https://doi.org/10.1016/j.ecolind.2020.106712
Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F. et al. (2009). Ecological networks —beyond food webs. The Journal of Animal Ecology, 78, 253–269. https://doi.org/10.1111/j.1365-2656.2008.01460.x
Jordán, F. (2009). Keystone species and food webs. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 1733–1741. https://doi.org/10.1098/rstb.2008.0335
Jordán, F., Benedek, Z. y Podani, J. (2007). Quantifying positional importance in food webs: a comparison of centrality indices. Ecological Modelling, 205, 270–275. https://doi.org/10.1016/j.ecolmodel.2007.02.032
Jordán, F. y Scheuring, I. (2004). Network ecology: topological constraints on ecosystem dynamics. Physics of Life Reviews, 1, 139–172. https://doi.org/10.1016/j.plrev.2004.08.001
Kluger, L. C., Taylor, M. H., Mendo, J., Tam, J. y Wolff, M. (2016). Carrying capacity simulations as a tool for ecosystem-based management of a scallop aquaculture system. Ecological Modelling, 331, 44–55. https://doi.org/10.1016/j.ecolmodel.2015.09.002
Koehn, L. E., Essington, T. E., Marshall, K. N., Kaplan, I. C., Sydeman, W. J., Szoboszlai, A. I. et al. (2016). Developing a high taxonomic resolution food web model to assess the functional role of forage fish in the California current ecosystem. Ecological Modelling, 335, 87–100. https://doi.org/10.1016/j.ecolmodel.2016.05.010
Kolesnikov, V., Anikin, V., Mosolova, E., Faizliev, A., Mironov, S., Zemlyanskaya, M. et al. (2019). Food Chain Analysis Based on Graph Centrality Indicators. Journal of Physics: Conference Series, 1334, 012004. https://doi.org/10.1088/1742-6596/1334/1/012004
Lafferty, K. D. y Dunne, J. A. (2010). Stochastic ecological network occupancy (SENO) models: A new tool for modeling ecological networks across spatial scales. Theoretical Ecology, 3, 123–135. https://doi.org/10.1007/s12080-010-0082-0
Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J. y Ellison, A. M. (2017). Ecological network metrics: Opportunities for synthesis. Ecosphere, 8, e01900. https://doi.org/10.1002/ecs2.1900
Leontief, W. W. (1936). Quantitative input and output relations in the economic systems of the United States. The Review of Economics and Statistics, 18, 105–125. https://doi.org/10.2307/1927837
Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Bulletin of Mathematical Biology, 53, 167–191.
Martinez, N. D. (1991). Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecological Monographs, 61, 367–392. https://doi.org/10.2307/2937047
Martinez, N. D. (1992). Constant connectance in community food webs. The American Naturalist, 139, 1208–1218.
Martinez, N. D. (1993). Effects of resolution on food web structure. Oikos, 66, 403–412. https://doi.org/10.2307/3544934
Massol, F., Dubart, M., Calcagno, V., Cazelles, K., Jacquet, C., Kéfi, S. et al. (2017). Island biogeography of food webs. En D. A. Bohan, A. J. Dumbrell, y F. Massol (Eds.), Advances in ecological research. Vol. 56 (pp. 183–262). London: Academic Press. https://doi.org/10.1016/bs.aecr.2016.10.004
May, R. M. (1972). Will a large complex system be stable? Nature, 238, 413–414. https://doi.org/10.1038/238413a0
May, R. M. (1974). Stability and complexity in model ecosystems. Princeton: Princeton University Press. https://doi.org/10.2307/j.ctvs32rq4
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256. https://doi.org/10.1137/s003614450342480
Nielsen, S. N. y Ulanowicz, R. E. (2000). On the consistency between thermodynamical and network approaches to ecosystems. Ecological Modelling, 132, 23–31. https://doi.org/10.1016/S0304-3800(00)00302-1
Nogues, Q., Raoux, A., Araignous, E., Chaalali, A., Hattab, T., Leroy, B. et al. (2021). Cumulative effects of marine renewable energy and climate change on ecosystem properties: Sensitivity of ecological network analysis. Ecological Indicators, 121, 107128. https://doi.org/10.1016/j.ecolind.2020.107128
Ocampo-Reinaldo, M., Milessi, A. C., Romero, M. A., Crespo, E., Wolff, M. y González, R. A. (2016). Assessing the effects of demersal fishing and conservation strategies of marine mammals over a Patagonian food web. Ecopath 30 years - Modelling ecosystem dynamics: beyond boundaries with EwE. Ecological Modelling, 331, 31–43. https://doi.org/10.1016/j.ecolmodel.2015.10.025
Olivier, P. y Planque, B. (2017). Complexity and structural properties of food webs in the Barents Sea. Oikos, 126, 1339–1346. https://doi.org/10.1111/oik.04138
Opsahl, T., Agneessens, F. y Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32, 245–251. https://doi.org/10.1016/j.socnet.2010.03.006
Patonai, K. y Jordán, F. (2017). Aggregation of incomplete food web data may help to suggest sampling strategies. Ecological Modelling, 352, 77–89. https://doi.org/10.1016/j.ecolmodel.2017.02.024
Patten, B. C. (1978). Systems approach to the concept of environment. The Ohio Journal of Science, 78, 206–222.
Patten, B. C. (1985). Energy cycling in the ecosystem. Ecological Modelling, 28, 1–71. https://doi.org/10.1016/0304-3800(85)90013-4
Patten, B. C. y Odum, E. P. (1981). The cybernetic nature of ecosystems. The American Naturalist, 118, 886–895. https://doi.org/10.1086/283881
Pimm, S. L. (1979). The structure of food webs. Theoretical Population Biology, 16, 144–158. https://doi.org/10.1016/0040-5809(79)90010-8
Pimm, S. L. (1982). Food webs. New York: Chapman and Hall.
Pimm, S. L. y Lawton, J. H. (1978). On feeding on more than one trophic level. Nature, 275, 542–544. https://doi.org/10.1038/275542a0
Polovina, J. J. (1984). Model of a coral reef ecosystem. Coral Reefs, 3, 1–11. https://doi.org/10.1007/BF00306135
Post, D. M. (2002). The long and short of food-chain length. Trends in Ecology & Evolution, 17, 269–277. https://doi.org/10.1016/S0169-5347(02)02455-2
Pringle, R. M. (2020). Untangling food webs. En A. Dobson, D. Tilman y R. D. Holt (Eds.), Unsolved problems in Ecology (pp. 225–238). Princeton: Princeton University Press. https://doi.org/doi:10.1515/9780691195322-020
Riede, J. O., Rall, B. C., Banasek-Richter, C., Navarrete, S. A., Wieters, E. A., Emmerson, M. C. et al. (2010). Chapter 3— Scaling of food-web properties with diversity and complexity across ecosystems. En G. Woodward (Ed.), Advances in ecological research. Vol. 42 (pp. 139–170). London: Academic Press.
https://doi.org/10.1016/B978-0-12-381363-3.00003-4
Rohr, R. P., Naisbit, R. E., Mazza, C. y Bersier, L. F. (2016). Matching–centrality decomposition and the forecasting of new links in networks. Proceedings of the Royal Society B, 283, 20152702. https://doi.org/10.1098/rspb.2015.2702
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. y Hertog, R. (2007). Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society B, 274, 2077–2086. https://doi.org/10.1098/rspb.2007.0515
Scharler, U. M., Ulanowicz, R. E., Fogel, M. L., Wooller, M. J., Jacobson-Meyers, M. E., Lovelock, C. E. et al. (2015). Variable nutrient stoichiometry (carbon:nitrogen: phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system. Oecologia, 179, 863–876. https://doi.org/10.1007/s00442-015-3379-2
Shanafelt, D. W. y Loreau, M. (2018). Stability trophic cascades in food chains. Royal Society Open Science, 5, 180995. https://doi.org/10.1098/rsos.180995
Sinclair, A. R. E., Pech, R. P., Dickman, C. R., Hik, D., Mahon, P. y Newsome, A. E. (1998). Predicting effects of predation on conservation of endangered prey. Conservation Biology, 12, 564–575.
Smit, K. P., Bernard, A. T. F., Lombard, A. T. y Sink, K. J. (2021). Assessing marine ecosystem condition: A review to support indicator choice and framework development. Ecological Indicators, 121, 107148. https://doi.org/10.1016/j.ecolind.2020.107148
Stouffer, D. B., Camacho, J., Guimerà, R., Ng, C. A. y Nunes Amaral, L. A. (2005). Quantitative patterns in the structure of model and empirical food webs. Ecology, 86, 1301–1311.
Sugihara, G., Bersier, L. F. y Schoenly, K. (1997). Effects of taxonomic and trophic aggregation on food web properties. Oecologia, 112, 272–284.
Sugihara, G., Schoenly, K. y Trombla, A. (1989). Scale invariance in food web properties. Science, 245, 48–52. https://doi.org/10.1126/science.2740915
Tomczak, M. T., Heymans, J. J., Yletyinen, J., Niiranen, S., Otto, S. A. y Blenckner, T. (2013). Ecological Network Indicators of Ecosystem Status and Change in the Baltic Sea. Plos One, 8, e75439. https://doi.org/10.1371/journal.pone.0075439
Trifonova, N., Kenny, A., Maxwell, D., Duplisea, D., Fernandes, J. y Tucker, A. (2015). Spatio-temporal Bayesian network models with latent variables for revealing trophic dynamics and functional networks in fisheries ecology. Ecological Informatics, 30, 142–158. https://doi.org/10.1016/j.ecoinf.2015.10.003
Turney, S. y Buddle, C. M. (2016). Pyramids of species richness: the determinants and distribution of species diversity across trophic levels. Oikos, 125, 1224–1232. https://doi.org/10.1111/oik.03404
Ulanowicz, R. E. (1986). Growth and development: ecosystems phenomenology. New York: Springer.
Ulanowicz, R. E. (2009). The dual nature of ecosystem dynamics. Ecological Modelling, 220, 1886–1892. https://doi.org/10.1016/j.ecolmodel.2009.04.015
Ulanowicz, R. E. y Abarca-Arenas, L. G. (1997). An informational synthesis of ecosystem structure and function. Ecological Modelling, 95, 1–10. https://doi.org/10.1016/S0304-3800(96)00032-4
Ulanowicz, R. E. y Baird, D. (1999). Nutrient controls on ecosystem dynamics: The Chesapeake mesohaline community. Journal of Marine Systems, 19, 159–172. https://doi.org/10.1016/S0924-7963(98)90017-3
Ulanowicz, R. E. y Norden, J. S. (1990). Symmetrical overhead in flow networks. International Journal of Systems Science, 21, 429–437. https://doi.org/10.1080/00207729008910372
Ulanowicz, R. E. y Puccia, C. J. (1990). Mixed trophic impacts ecosystems. Coenoses, 5, 7–16.
Vermaat, J. E., Dunne, J. A. y Gilbert, A. J. (2009). Major dimensions in food-web structure properties. Ecology, 90, 278–282. https://doi.org/10.1890/07-0978.1
Wasserman, S. y Faust, K. (1994). Social network analysis: methods and applications. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511815478
Williams, R. J. y Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404, 180–183. https://doi.org/10.1038/35004572
Williams, R. J. y Martinez, N. D. (2004). Limits to trophic levels and omnivory in complex food webs: theory and data. The American Naturalist, 163, 458–468. https://doi.org/10.1086/381964
Yen, J. D. L., Cabral, R. B., Cantor, M., Hatton, I., Kortsch, S., Patrício, J. et al. (2016). Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures. Journal of Animal Ecology, 85, 537–547. https://doi.org/10.1111/1365-2656.12484
Yin, J., Xu, J., Xue, Y., Xu, B., Zhang, C., Li, Y. et al. (2021). Evaluating the impacts of El Niño events on a marine bay ecosystem based on selected ecological network indicators. Science of The Total Environment, 763, 144205. https://doi.org/10.1016/j.scitotenv.2020.144205
Zhao, L., Zhang, H., O’Gorman, E. J., Tian, W., Ma, A., Moore, J. C. et al. (2016). Weighting and indirect effects identify keystone species in food webs. Ecology Letters, 19, 1032–1040. https://doi.org/10.1111/ele.12638