Impacto del disturbio en las preferencias alimentarias y dominancia de las hormigas (Hymenoptera: Formicidae) en un bosque templado de México

Autores/as

  • Meghan I. Zolá-Rodríguez Akumal Monkey Sanctuary & Rescued Animals
  • Mariana Cuautle Dr, https://orcid.org/0000-0002-9694-7578
  • Marco Daniel Rodríguez-Flores Blue Marlin Conservation
  • Citlalli Castillo-Guevara Universidad Autónoma de Tlaxcala

DOI:

https://doi.org/10.22201/ib.20078706e.2024.95.5523

Palabras clave:

Nidos de hormigas, Índice de dominancia, Hábitos alimenticios, Hipótesis de compensación, Carbohidratos, Proteínas

Resumen

Este estudio examina el impacto del disturbio en las preferencias alimentarias y dominancia de una comunidad de hormigas en un ecosistema templado en México, en bosque de encino nativo y pastizal inducido (vegetación perturbada). Se registraron los alimentos transportados por las hormigas a sus nidos. Estos datos fueron analizados utilizando pruebas de x2. Se colocaron cebos de atún y miel cerca de los nidos para registrar la presencia de hormigas. Utilizamos un modelo binomial para determinar si la probabilidad de encontrar una hormiga en los cebos se veía afectada por la vegetación, cebo o especie de hormiga. Los índices de dominancia se determinaron usando cebos. Se emplearon pruebas t y Anova para comparar los índices de dominancia entre tipos de vegetación, cebos y especies de hormigas. No hubo diferencias significativas en las preferencias alimentarias entre tipos de vegetación, pero algunas especies mostraron una preferencia por la miel (carbohidratos), que podría ser un recurso limitado a nivel del suelo. Las hormigas mostraron un comportamiento sumiso en ambos tipos de vegetación. Esta investigación
muestra que las hormigas podrían optimizar su ingesta de nutrientes, permitiéndoles sobrevivir bajo condiciones de disturbio, en lugar de aumentar su dominancia.

Citas

Agosti, D., Majer, J. D., Alonso, L. E., & Schultz, T. R. (2000). Ants: standard methods for measuring and monitoring biodiversity. Washington D.C.: Smithsonian Institution Press.

Andersen, A. (2000). A global ecology of rainforest ants: functional groups in relation to environmental stress and disturbance. In D. Agosti, J. D. Majer, L. E. Alonso, & T. R. Schultz (Eds.), Ants: standard methods for measuring and monitoring biodiversity (pp. 25–34). Washington D.C.: Smithsonian Institution Press.

Andersen, A.N. (1992). Regulation of “momentary” diversity by dominant species in exceptionally rich ant communities of the Australian seasonal tropics. The American Naturalist, 40, 401–420. https://www.journals.uchicago.edu/doi/abs/10.1086/285419

AntWiki (n.d.). Nylanderia. AntWiki. Consulted 8/20/2024

Arnan, X., Cerdá, X., & Retana, J. (2012). Distinctive life traits and distribution along environmental gradients of dominant and subordinate Mediterranean ant species. Oecologia, 170, 489–500. https://doi.org/10.1007/s00442-012-2315-y

Castillo-Guevara, C., Cuautle, M., Lara, C., & Juárez-Juárez, B. (2019). Effect of agricultural land-use change on ant dominance hierarchy and food preferences in a temperate oak forest. PeerJ, 7, e6255. https://peerj.com/articles/6255/

Cerdá, X., Arnan, X., & Retana, J. (2013). Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology? Myrmecological News, 18, 131–147. https://doi.org/10.25849/myrmecol.news_018:131

Cerdá, X., Retana, J., & Cros S. (1997). Thermal disruption of transitive hierarchies in Mediterranean ant communities. Journal of Animal Ecology, 66, 363–374.

Costes-Quijano, R., Meza, A. R., Macías-Juárez, A., Berriel-Mastreta, C. A., Cortés-Atilano, B., Martínez-Romero, L. E. et al. (2006). Plan de manejo parque ecológico recreativo General Lázaro Cárdenas “Flor del Bosque”. [Management Plan of the recreative ecological Park “General Lázaro Cárdenas “Flor del Bosque”]. Ciudad de México: Gobierno del Estado de Puebla/ Secretaría de Medio Ambiente y Recursos Naturales.

Cuautle, M., Vergara, C., & Badano, E. (2016). Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest. Neotropical Entomology, 45, 170–9. https://doi.org/10.1155/2012/516058

Cuezzo, F., & Guerrero, R. J. (2012). The Ant Genus Dorymyrmex Mayr (Hymenoptera: Formicidae: Dolichoderinae) in Colombia. Psyche, 51605, 1–24. https://doi.org/10.1155/2012/516058

Dáttilo, W., Díaz-Castelazo, C., & Rico-Gray, V. (2014). Ant dominance hierarchy determines the nested pattern in ant-plant networks. Biological Journal of the Linnean Society, 113, 405–414. https://doi.org/10.1111/bij.12350.

Davidson, D. W. (2005). Ecological stoichiometry of ants in a New World rain forest. Oecologia, 142, 221–231. https://doi.org/10.1007/s00442-004-1722-0

Dejean, A., & Corbara, B. (2003). A review of mosaics of dominant ants in rainforests and plantations. In Y. Basset, V. Novotny, S. E. Miller, & R. L. Kitching (Eds.), Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy (pp 341–347). Cambridge: Cambridge University Press.

Ellis, E. C., Goldewijk, K. K., Siebert S., Lightman, D., & Ramankutty, N. (2010). Anthropogenic Transformation of the Biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589–606. https://doi.org/10.1111/j.1466-8238.2010.00540.x

Fellers, J. H. (1987). Interference and exploitation in a guild of Woodland ants. Ecology, 68, 1466–1478. https://doi.org/10.2307/1939230

Fellers, J. H. (1989). Daily and seasonal activity in woodland ants. Oecologia, 78, 69–76. https://doi.org/10.1007/BF00377199

Foley, J. A., DeFries, R., Asner, G. P., Barford C., Bonan, G., Carpenter, S. R. et al. (2005). Global Consequences of Land Use. Science, 309, 570–574. https://doi/10.1126/science.1111772

Hoffmann, B. D., & Andersen, A. N. (2003). Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecologyl, 28, 444–464. –https://doi.org/10.1046/j.1442-9993.2003.01301.x

Houdria, M., Salas-López, A., Orivel. J., Bluthgen, N., & Menzel, F. (2015). Dietary and temporal niche differentiation in tropical ants - can they explain local ant coexistence? Biotropica, 47, 208–217. https://doi.org/10.1111/btp.12184

Hernández-Flores, J., Osorio-Beristain. M., & Martínez-Garza. C. (2016). Ant Foraging as an Indicator of Tropical Dry Forest Restoration. Environmental Entomology, 45, 991–994. https://doi.org/10.1093/ee/nvw054

Kaspari, M., Donoso, D., Lucas, J. A., Zumbusch, T., & Kay, A. D. (2012). Using nutritional ecology to predict community structure: a field test in Neotropical ants. Ecosphere, 3, 93. https://doi.org/10.1890/ES12-00136.1

Kaspari, M., & Yanoviak, S. P. (2001). Bait Use in Tropical Litter and Canopy Ants-Evidence of Differences in Nutrient Limitation. Biotropica, 33, 207–211. https://doi.org/10.1646/0006-3606(2001)033[0207:BUITLA]2.0.CO;2

Łaska, G. (2001). The disturbance and vegetation dynamics: a review and an alternative framework. Plant Ecology, 157, 77–99. https://doi.org/10.1023/A:1013760320805

Lynch, J. F., Balinsky, E. C., & Vail, S. G. (1980). Foraging patterns in three sympatric forest ant species, Prenolepis imparis, Paratrechina melanderi and Aphaenogaster rudis (Hymenoptera: Formicidae). Ecological Entomology, 5, 353–371. https://doi.org/10.1111/j.1365-2311.1980.tb01160.x

Mackay, W., & Mackay, E. (1989). Clave de los géneros de hormigas en México (Hymenoptera: Formicidae). El Paso, Texas: The University of Texas.

Nettimi, R. P., & Iyer, P. (2015). Patch fidelity in Camponotus compressus ants foraging on honeydew secreted by treehoppers. Current Science, 109, 362–366.

Parr, C. L. (2008). Dominant ants can control assemblage species richness in a South Africa savanna. Journal of Animal Ecology, 77, 1191–1198. https://doi.org/10.1111/j.1365-2656.2008.01450.x

Parr, L., & Gibb, H. (2012). The discovery-dominance trade-off is the exception, rather than the rule Journal of Animal Ecology, 81, 233–241. https://doi.org/10.1111/j.1365-2656.2011.01899.x

Pirk, G. I., & López-de Casenave, J. (2014). Effect of harvester ants of the genus Pogonomyrmex on the soil seed bank around their nests in the central Monte desert, Argentina. Ecological Entomology, 39, 610–619. https://doi.org/10.1111/een.12140

R Core Team (2022). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

Radnan, G. N., Gibb, H., & Eldridge, D. J. (2018). Soil surface complexity has a larger effect on food exploitation by ants than a change from grassland to shrubland. Ecological Entomology, 43, 379–388. https://doi.org/10.1111/een.12510

Rico-Gray, V., & Oliveira, P. S. (2007). The ecology and evolution of ant-plant interactions. Chicago: University of Chicago Press.

Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo. R. et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774. https://doi.org/10.1126/science.287.5459.17

Santini, G., Tucci, L., Ottonetti, L., & Frizzi, L. (2007). Competition trade-offs in the organisation of a Mediterranean ant assemblage. Ecological Entomology, 32, 319–326. https://doi.org/10.1111/j.1365-2311.2007.00882.x

Savolainen, R., Vepsäläinen, K., & Wuorenrinne, H. (1989). Ant assemblages in the taiga biome: testing the role of territorial wood ants. Oecologia, 81, 481–486. https://doi.org/10.1007/BF00378955

Schultheiss, P., Nooten, S.S., Wang, R., Wong, M. K. L., Brassard, F., & Guénard, B. (2022). The abundance, biomass, and distribution of ants on Earth. Proceedings of the National Academy of Sciences of the United States of America, 119, e2201550119. https://doi.org/10.1073/pnas.2201550119

Spotti, F. A., Castracani, C., Grasso, D. A., & Mori, A. (2015). Daily activity patterns and food preferences in an alpine ant community. Ethology Ecology & Evolution, 3, 306–324. https://doi.org/10.1080/03949370.2014.947634

Stuble, K. L., Juri¢, I., Cerdá, X., & Sanders, N. J. (2017). Dominance hierarchies are a dominant paradigm in ant ecology (Hymenopter: Formicidae), but should they be? And what is a dominance hierarchy anyways? Mirmecological News, 24, 71–81. https://doi.org/10.25849/myrmecol.news_024:071

Toro, I. D., Ribbons, R. R., Pelini, S. L., Dauber, J., & Forest, H. (2012). The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News, 17, 133–146. https://doi.org/10.25849/myrmecol.news_017:133

Trigos-Peral, G., Markó, B., Babik, H., Tăuşan, I., Maák, I., Pálfi, Z. et al. (2016). Differential impact of two dominant Formica ant species (Hymenoptera, Formicidae) on subordinates in temperate Europe. Journal of Hymenoptera Research, 50, 97–116. https://doi.org/10.3897/JHR.50.8301

Vepsäläinen, K., & Pisarski, B. (1982). Assembly of island ant communities. Annales Zoologici Fennici, 19, 327–335.

Vonshak, M., & Gordon, D. M. (2015). Intermediate disturbance promotes invasive ant abundance. Biological Conservation, 186, 359–367. https://doi.org/10.1016/j.biocon.2015.03.024

White, P. S., & Jentsch, A. (2001). The search for generality in studies of disturbance and ecosystem dynamics. In K. Esser, U. Lüttge, J. W. Kadereit, & W. Beyschlag (Eds.), Progress in Botany (Vol. 62). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-56849-7_17

Wilson, E. O. (2003). Pheidole in the New World: a dominant, hyperdiverse ant genus. Cambridge, Massachusetts: Harvard University Press.

Descargas

Publicado

2024-12-05

Número

Sección

ECOLOGÍA