Diversidad postincendio de mariposas en un bosque de pino-encino del noreste de México

Autores/as

  • Wibke Himmelsbach Universidad Autónoma de Nuevo León
  • Rebecca Jane Friesen Elk Island National Park
  • Marco Aurelio González-Tagle Universidad Autónoma de Nuevo León https://orcid.org/0000-0003-0750-9128
  • Andrés Eduardo Estrada-Castillón Universidad Autónoma de Nuevo León
  • Luis Gerardo Cuéllar-Rodríguez Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.22201/ib.20078706e.2024.95.5258

Palabras clave:

Bosque montano árido, Diversidad de flores, Diversidad de mariposas, Incendio forestal, Piroentomología, Sierra Madre Oriental

Resumen

Últimamente se ha descrito una disminución de la abundancia y diversidad de insectos, así como una alteración del régimen de incendios forestales. Debido a la sensibilidad de las mariposas a los cambios ambientales, se estudió la riqueza de mariposas en 2 bosques, uno afectado por un incendio y otro sin indicios de fuego. Mediante el muestreo en transectos, así como la captura de mariposas con trampas durante las 4 estaciones del año, se determinó la diversidad florística y de mariposas. El análisis de los datos obtenidos mostró que el bosque con fuego presentaba una mayor diversidad de flores y mariposas que el área control. Comparando los 2 bosques, se confirmó una disimilitud de 27% y 41% entre la riqueza de especies de flores y mariposas, respectivamente. Además, se observó una variación significativa en la presencia de flores y mariposas a lo largo del año en el área quemada, la cual no fue significativa en el área control. Por lo tanto, es importante estudiar el efecto de los incendios forestales en la diversidad vegetal y animal, y considerar sus resultados en los planes de manejo forestal.

Citas

Adamidis, G. C., Swartz, M. T., Zografou, K. y Sewall, B. J. (2019). Prescribed fire maintains host plants of a rare grassland butterfly. Nature, 9, 1–12. https://doi.org/10.1038/s41598-019-53400-1

Ávila-Flores, D. Y., González-Tagle, M. A., Jiménez-Pérez, J., Aguirre-Calderón, O. A., Treviño-Garza, E. J. y Vargas-Larreta, B. (2014). Dendrocronopirología: análisis de la evidencia morfológica de incendios forestales. Dendrochronopyrology : analysis of the morphological evidence of forest fires. Revista Mexicana de Ciencias Forestales, 5, 136–147.

Berg, Å., Ahrné, K., Öckinger, E., Svensson, R. y Söderström, B. (2011). Butterfly distribution and abundance is affected by variation in the Swedish forest-farmland landscape. Biological Conservation, 144, 2819–2831. https://doi.org/10.1016/J.BIOCON.2011.07.035

Börschig, C., Klein, A. M., Wehrden von, H. y Krauss, J. (2013). Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic and Applied Ecology, 14, 547–554. https://doi.org/10.1016/j.baae.2013.09.002

Bowd, E., Blanchard, W., McBurney, L. y Lindenmayer, D. (2021). Direct and indirect disturbance impacts on forest biodiversity. Ecosphere, 12, e03823. https://doi.org/10.1002/ECS2.3823

Brown, N., Jennings, S., Wheeler, P. y Nabe-Nielsen, J. (2000). An improved method for the rapid assessment of forest understorey light environments. Journal of Applied Ecology, 37, 1044–1053. https://doi.org/10.1046/j.1365-2664.2000.00573.x

Brückmann, S. V., Krauss, J. y Steffan-Dewenter, I. (2010). Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. Journal of Applied Ecology, 47, 799–809. https://doi.org/10.1111/J.1365-2664.2010.01828.X

Cantú-Ayala, C., González, F. N., Uvalle, J. I. y Marmolejo, J. G. (Eds.). (2010). Biodiversidad y conservación del monumento natural Cerro de la Silla, México. Monterrey: Universidad Autónoma de Nuevo León.

Cantú, Ayala., C., Marmolejo, M., J., González, S., F. y Uvalle, S., J. (2013). El Parque Nacional Cumbres de Monterrey en el contexto mexicano de la conservación. En C. Cantú-Ayala, M. Rovalo-Merino, J. Marmolejo-Moncivais, S. Ortiz-Hernández y F. Seriñá-Garza (Eds.), Historia natural del Parque Nacional Cumbres de Monterrey, México, Vol. 1 (pp. 16–26). Monterrey: Universidad Autónoma de Nuevo León.

Cantú-Ayala, C., Rovalo-Merino, M., Marmolejo-Moncivais, J., Ortiz-Hernández, S. y Seriñá-Garza, F. Eds.). (2013). El Parque Nacional Cumbres de Monterrey en el contexto de la conservación. Monterrey: Universidad Autónoma de Nuevo León.

Casas-Pinilla, L. C., Mahecha, J. O., Dumar, R. J. C. y Ríos-Málaver, I. C. (2017). Diversidad de mariposas en un paisaje de bosque seco tropical, en la Mesa de los Santos, Santander, Colombia (Lepidoptera: Papilionoidea). SHILAP Revista Lepidopterología, 45, 83–108.

Clarke, K. R., Gorley, R. N., Somerfield, P. J. y Warwick, R. M. (2014). Change in marine communities: an approach to statistical analysis and interpretation (3rd edition). PRIMER-e: Plymouth. https://updates.primer-e.com/primer7/manuals/Methods_manual_v7.pdf

Cleary, D. F. R. y Genner, M. J. (2004). Changes in rain forest butterfly diversity following major ENSO-induced fires in Borneo. Global Ecology and Biogeography, 13, 129–140. https://doi.org/10.1111/j.1466-882X.2004.00074.x

Conanp (Comisión Nacional de Áreas Naturales Protegidas). (2006). Programa de conservación y manejo, Parque Nacional Cumbres de Monterrey. Disponible en: https://www.conanp.gob.mx/anp/consulta/PCM-20DIC06.pdf

Cuervo-Robayo, A. P., Téllez-Valdés, O., Gómez-Albores, M. A., Venegas-Barrera, C. S., Manjarrez, J. y Martínez-Meyer, E. (2014). An update of high-resolution monthly climate surfaces for Mexico. International Journal of Climatology, 34, 2427–2437. https://doi.org/10.1002/JOC.3848

Curtis, R. J., Brereton, T. M., Dennis, R. L. H., Carbone, C. y Isaac, N. J. B. (2015). Butterfly abundance is determined by food availability and is mediated by species traits. Journal of Applied Ecology, 52, 1676–1684. https://doi.org/10.1111/1365-2664.12523

Debinski, D. M., Wickham, H., Kindscher, K., Caruthers, J. C. y Germino, M. (2010). Montane meadow change during drought varies with background hydrologic regime and plant functional group. Ecology, 91, 1672–1681. https://doi.org/10.1890/09-0567.1

DellaSala, D. A. (2018). Emergence of a new climate and human-caused wildfire era for western USA forests. En D.A. DellaSala (Ed.), Reference Module Earth Systems and Environmental Sciences (pp. 1-12). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10999-6

Dennis, E. B., Morgan, B. J. T., Brereton, T. M., Roy, D. B. y Fox, R. (2017). Using citizen science butterfly counts to predict species population trends. Conservation Biology, 31, 1350–1361. https://doi.org/10.1111/cobi.12956

DeVries, P. J., Murray, D. y Lande, R. (1997). Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest. Biological Journal of the Linnean Society, 62, 343–364. https://doi.org/10.1006/bijl.1997.0155

DeVries, P. J. y Walla, T. R. (2001). Species diversity and community structure in neotropical fruit-feeding butterflies. Biological Journal of the Linnean Society, 74, 1–15. https://doi.org/10.1006/bij1.2001.0571

Doerr, S. H. y Santín, C. (2016). Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150345. https://doi.org/10.1098/RSTB.2015.0345

Estrada-Castillón, E., Villarreal-Quintanilla, J. Á., Salinas-Rodríguez, M. M., González-Rodríguez, H., Jiménez-Pérez, J. y García-Aranda, M. A. (2013). Flora and phytogeography of Cumbres de Monterrey National Park, Mexico. Journal of the Botanical Research Institute of Texas, 7, 771–801.

Gaigher, R., Pryke, J. S. y Samways, M. J. (2021). Habitat complementarity and butterfly traits are essential considerations when mitigating the effects of exotic plantation forestry. Biodiversity and Conservation, 30, 4089–4109. https://doi.org/10.1007/S10531-021-02293-6

Gardener, M. (2017). Statistics for ecologists using R and Excel, 2nd edition. Exeter: Pelagic Publishing.

Garwood, K. y Lehman, R. (2005). Butterflies of northeastern Mexico: Nuevo Leon, San Luis Potosí, Tamaulipas: a photographic checklist, 2nd Ed. McAllen: Edition Eye Scry Publishing.

Gómez-Murillo, L. P., González-Haro, A. G., Raygoza-Martínez, A. P., Vallejo-Maldonado, G. E., Cruz-Osorno, A., Martínez-Domínguez, R. et al. (2016). Parque Nacional Cumbres de Monterrey, Programa de manejo del fuego. Disponible en: https://www.usfsmex.org/img/pdf/programas/cumbres_de_monterrey.pdf

González-Tagle, M. A., Schwendenmann, L., Pérez, J. J. y Schulz, R. (2008). Forest structure and woody plant species composition along a fire chronosequence in mixed pine–oak forest in the Sierra Madre Oriental, Northeast Mexico. Forest Ecology and Management, 256, 161–167. https://doi.org/10.1016/J.FORECO.2008.04.021

Gurrutxaga-San Vicente, M. y Lozano-Valencia, P. J. (2010). Causas de los procesos territoriales de fragmentación de hábitats. Lurralde: Investigación y Espacio, 33, 147–158.

Harper, A. R., Doerr, S. H., Santin, C., Froyd, C. A. y Sinnadurai, P. (2018). Prescribed fire and its impacts on ecosystem services in the UK. Science of the Total Environment, 624, 691–703. https://doi.org/10.1016/J.SCITOTENV.2017.12.161

Harper, C. A., Ford, W. M., Lashley, M. A., Moorman, C. E. y Stambaugh, M. C. (2016). Fire effects on wildlife in the Central Hardwoods and Appalachian regions, USA. Fire Ecology, 12, 127–159. https://doi.org/10.4996/FIREECOLOGY.1202127

He, T., Lamont, B. B. y Pausas, J. G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews, 94, 1983–2010. https://doi.org/10.1111/BRV.12544

Hill, G. M., Kawahara, A. Y., Daniels, J. C., Bateman, C. C. y Scheffers, B. R. (2021). Climate change effects on animal ecology: butterflies and moths as a case study. Biological Reviews, 96, 2113–2126. https://doi.org/10.1111/BRV.12746

Houlihan, P. R., Harrison, M. E. y Cheyne, S. M. (2013). Impacts of forest gaps on butterfly diversity in a Bornean peat-swamp forest. Journal of Asia-Pacific Entomology, 16, 67–73.

Hsieh, T. C., Ma, K. H. y Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613

Johansson, V., Gustafsson, L., Andersson, P. y Hylander, K. (2020). Fewer butterflies and a different composition of bees, wasps and hoverflies on recently burned compared to unburned clear-cuts, regardless of burn severity. Forest Ecology and Management, 463, 118033. https://doi.org/10.1016/J.FORECO.2020.118033

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x

Keeley, J. E. (2008). Fire. En S.E. Jorgensen y B.D. Fath (Eds), Encyclopedia of Ecology, Five-Volume Set (pp. 1557–1564). Copenague: Academic Press. https://doi.org/10.1016/B978-008045405-4.00496-1

Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116–126. https://doi.org/10.1071/WF07049

Keeley, J. E. y Pausas, J. G. (2019). Distinguishing disturbance from perturbations in fire-prone ecosystems. International Journal of Wildland Fire, 28, 282–287. https://doi.org/10.1071/WF18203

Kelly, L. T. y Brotons, L. (2017). Using fire to promote biodiversity. Science, 355, 1264–1265. https://doi.org/10.1126/SCIENCE.AAM7672

Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E. et al. (2020). Fire and biodiversity in the Anthropocene. Science, 370, eabb0355 https://doi.org/10.1126/SCIENCE.ABB0355/SUPPL_FILE/ABB0355-KELLY-SM.PDF

Keren, I., Malkinson, D., Dorman, M., Balaban, A. y Kutiel, P. B. (2022). The relationship between plant and butterfly richness and composition and socioecological drivers in five adjacent cities along the Mediterranean Coast of Israel. Journal of Urban Ecology, 8, 1–11. https://doi.org/10.1093/JUE/JUAC001

Köhler, W., Schachtel, G. y Voleske, P. (2012). Biostatistik. Eine Einführung für Biologen und Agrarwissenschaftler, 4th Ed. Berlín, Heidelberg. Springer. https://doi.org/10.1007/978-3-642-29271-2

Krauss, J., Steffan-Dewenter, I. y Tscharntke, T. (2003). How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? Journal of Biogeography, 30, 889–900. https://doi.org/10.1046/J.1365-2699.2003.00878.X

López-Segoviano, G., Díaz-Verduzco, L., Arenas-Navarro, M. y Arizmendi, M. C. (2019). Diversidad estacional de aves en una región prioritaria para la conservación en el centro oeste de la Sierra Madre Oriental. Revista Mexicana de Biodiversidad, 90: e902754 https://doi.org/10.22201/ib.20078706e.2019.90.2754

Lucas, A., Bull, J. C., de Vere, N., Neyland, P. J. y Forman, D. W. (2017). Flower resource and land management drives hoverfly communities and bee abundance in seminatural and agricultural grasslands. Ecology and Evolution, 7, 8073–8086. https://doi.org/10.1002/ECE3.3303

Lucci-Freitas, A. V., Agra-Iserhard, C., Pereira-Santos, J., Oliveira-Carreira, J. Y., Bandini-Ribeiro, D. et al. (2014). Studies with butterfly bait traps: an overview. Revista Colombiana de Entomología, 40, 203–212.

Magurran, A. E. (1988). Ecological diversity and its measurement. Holanda: Springer. https://doi.org/10.1007/978-94-015-7358-0

Mason, S. C., Shirey, V., Ponisio, L. C. y Gelhaus, J. K. (2021). Responses from bees, butterflies, and ground beetles to different fire and site characteristics: a global meta-analysis. Biological Conservation, 261, 109265. https://doi.org/10.1016/j.biocon.2021.109265

Matteson, K. C. y Langellotto, G. A. (2010). Determinates of inner city butterfly and bee species richness. Urban Ecosystems, 13, 333–347. https://doi.org/10.1007/S11252-010-0122-Y

McCullough, D., Werner, R. A. y Neumann, D. (1998). Fire and insects in northern and boreal forest ecosystems on North America. Annual Review of Entomology, 43, 107–127.

McDermott-Long, O., Warren, R., Price, J., Brereton, T. M., Botham, M. S. y Franco, A. M. A. (2017). Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk? Journal of Animal Ecology, 86, 108–116. https://doi.org/10.1111/1365-2656.12594

Meddens, A. J. H., Kolden, C. A., Lutz, J. A., Smith, A. M. S., Cansler, C. A., Abatzoglou, J. T. et al. (2018). Fire refugia: What are they, and why do they matter for global change? In BioScience, 68, 944–954. https://doi.org/10.1093/biosci/biy103

Meigs, G. W., Dunn, C. J., Parks, S. A. y Krawchuk, M. A. (2020). Influence of topography and fuels on fire refugia probability under varying fire weather conditions in forests of the Pacific Northwest, USA. Canadian Journal of Forest Research, 50, 636–647. https://doi.org/10.1139/cjfr-2019-0406

Mola, J. M. y Williams, N. M. (2018). Fire-induced change in floral abundance, density, and phenology benefits bumble bee foragers. Ecosphere, 9, e02056. https://doi.org/10.1002/ECS2.2056

Mukherjee, S., Banerjee, S., Basu, P., Saha, G. K. y Aditya, G. (2018). Butterfly-plant network in urban landscape: Implication for conservation and urban greening. Acta Oecologica, 92, 16–25. https://doi.org/10.1016/J.ACTAO.2018.08.003

Mukherjee, S., Banerjee, S., Saha, G. K., Basu, P. y Aditya, G. (2015). Butterfly diversity in Kolkata, India: An appraisal for conservation management. Journal of Asia-Pacific Biodiversity, 8, 210–221. https://doi.org/10.1016/J.JAPB.2015.08.001

Öckinger, E., Bergman, K. O., Franzén, M., Kadlec, T., Krauss, J., Kuussaari, M. et al. (2012). The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecology, 27, 121–131. https://doi.org/10.1007/S10980-011-9686-Z/FIGURES/2

Pausas, J. G. y Keeley, J. E. (2019). Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 17, 289–295. https://doi.org/10.1002/FEE.2044

Pausas, J. G. y Ribeiro, E. (2017). Fire and plant diversity at the global scale. Global Ecology and Biogeography, 26, 889–897. https://doi.org/10.1111/GEB.12596

Platt, A. P. (1969). A lightweight collapsible bait trap for Lepidoptera. Journal of the Lepidopterists’ Society, 23, 97–101.

Pollard, E. y Yates, T. J. (1993). Monitoring butterflies for Ecology and Conservation. London: Chapman y Hall.

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O. y Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology y Evolution, 25, 345–353. https://doi.org/10.1016/J.TREE.2010.01.007

Pressler, Y., Moore, J. C. y Cotrufo, M. F. (2019). Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos, 128, 309–327. https://doi.org/10.1111/OIK.05738

R Core Team. (2023). R: a language and environment for statistical computing. https://www.r-project.org/

Radchuk, V., Turlure, C. y Schtickzelle, N. (2013). Each life stage matters: The importance of assessing the response to climate change over the complete life cycle in butterflies. Journal of Animal Ecology, 82, 275–285. https://doi.org/10.1111/J.1365-2656.2012.02029.X

Rodríguez, A. y Kouki, J. (2015). Emulating natural disturbance in forest management enhances pollination services for dominant Vaccinium shrubs in boreal pine-dominated forests. Forest Ecology and Management, 350, 1–12. https://doi.org/10.1016/J.FORECO.2015.04.029

Rodríguez-Trejo, D. A. y Fulé, P. Z. (2003). Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire, 12, 23–37. https://doi.org/10.1071/WF02040

Rubene, D., Schroeder, M. y Ranius, T. (2015). Diversity patterns of wild bees and wasps in managed boreal forests: Effects of spatial structure, local habitat and surrounding landscape. Biological Conservation, 184, 201–208. https://doi.org/10.1016/J.BIOCON.2015.01.029

Rundel, P. W., Arroyo, M. T. K., Cowling, R. M., Keeley, J. E., Lamont, B. B., Pausas, J. G. et al. (2018). Fire and plant diversification in mediterranean-climate regions. Frontiers in Plant Science, 9, 00851. https://doi.org/10.3389/FPLS.2018.00851

Saint-Germain, M., Drapeau, P. y Hibbert, A. (2013). Saproxylic beetle tolerance to habitat fragmentation induced by salvage logging in a boreal mixed-cover burn. Insect Conservation and Diversity, 6, 381–392. https://doi.org/10.1111/J.1752-4598.2012.00216.X

Sandoval-García, R., Jiménez-Pérez, J. Yerena-Yamallel, J. I., Aguirre-Calderón, O. A., Alanís-Rodríguez, E. y Gómez-Meza, M. V. (2021). Análisis multitemporal del uso del suelo y vegetación en el Parque Nacional Cumbres de Monterrey. Revista Mexicana de Ciencias Forestales, 12, 70-95. https://doi.org/10.29298/RMCF.V12I66.896

Serrat, A., Pons, P., Puig-Gironès, R. y Stefanescu, C. (2015). Environmental factors influencing butterfly abundance after a severe wildfire in mediterranean vegetation. Animal Biodiversity and Conservation, 38, 207–220. https://doi.org/10.32800/abc.2015.38.0207

Tam KinChung y Bonebrake, T. C. (2016). Butterfly diversity, habitat and vegetation usage in Hong Kong urban parks. Urban Ecosystems, 19, 721–733.

Visram, T. (2022). Wildfires disproportionately impact low-income homeowners. Fastcompany. Recuperado el 12 marzo, 2024 de: https://www.fastcompany.com/90775562/wildfires-disproportionately-impact-low-income-people-heres-how-communities-can-protect-them

Wix, N., Reich, M. y Schaarschmidt, F. (2019). Butterfly richness and abundance in flower strips and field margins: the role of local habitat quality and landscape context. Heliyon, 5, e01636. https://doi.org/10.1016/j.heliyon.2019.e01636

Yocom, L. L., Fulé, P. Z., Brown, P. M., Cerano, J., Villanueva-Díaz, J., Falk, D. A. et al. (2010). El Niño-southern oscillation effect on a fire regime in northeastern Mexico has changed over time. Ecology, 91, 1660–1671. https://doi.org/10.1890/09-0845.1

Descargas

Publicado

2024-05-03

Número

Sección

ECOLOGÍA