Hongos saprótrofos neotropicales de bosque de Juniperus deppeana (Cupressaceae): aislamiento, identificación, cultivo in vitro y preservación

Autores/as

  • Rut Ortega-Ávila Universidad Autónoma de Tlaxcala
  • Jaime Marcial-Quino Universidad Autónoma de Tlaxcala
  • José Luis Martínez-y Pérez Universidad Autónoma de Tlaxcala
  • Laura V. Hernández-Cuevas Universidad Autónoma de Tlaxcala
  • Araceli Tomasini Universidad Autónoma Metropolitana
  • Elvia Ortiz-Ortiz Universidad Autónoma de Tlaxcala
  • Alba Mónica Montiel-González Universidad Autónoma de Tlaxcala https://orcid.org/0000-0003-0672-8556

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.5223

Palabras clave:

Basidiomicetos, Caracterización, Bosque perturbado, Identificación taxonómica, Filogenia molecular

Resumen

La alteración de los bosques por actividades antropogénicas y fenómenos naturales ha llevado al desarrollo de
características adaptativas para que los organismos puedan tolerarlos o usarlos en su beneficio. En este trabajo se
aislaron e identificaron hongos saprótrofos de un bosque de Juniperus deppeana perturbado para su propagación in
vitro. Se recolectaron 31 especímenes; se propagaron en extracto de malta agar (EMA), papa dextrosa agar (PDA),
agar lignina Kraft (A-L) y medio mineral (MM). La identificación taxonómica se realizó a partir de caracteres macro
y micromorfológicos de los basidiomas, y fue complementada con un análisis filogenético de secuencias ITS. Solo
7 de las cepas crecieron en condiciones in vitro; los medios EMA y PDA fueron donde mejor se desarrollaron. La
temperatura ambiente (~22 °C) y la preservación a 4 °C fueron las mejores condiciones para mantener la viabilidad
de las cepas. Después de 6 meses, las cepas preservadas en glicerol (15%) a 4° y -20 °C no fueron viables. Los
hongos aislados pertenecen a los géneros Agrocybe, Byssomerulius, Coniophora y Gymnopus. Dada las condiciones
ambientales donde las cepas fueron aisladas, éstas representan nuevos prospectos de investigación para la obtención
de biomoléculas de interés biotecnológico.

Citas

Agretious, T. K. A. (2000). Floristic studies on some dark spored agarics of Kerala (Tesis docoral). Universidad de Calcuta. Calcuta, India.

Aguirre-Acosta, E., Ulloa M., Aguilar, S., Cifuentes, J. y Valenzuela, R. (2014). Biodiversidad de hongos en México. Revista Mexicana Biodiversidad, 85, 76–81. https://doi.org/10.7550/rmb.33649

Anteneh, Y. S., Brown, M. H. y Franco, C. M. M. (2019). Characterization of a halotolerant fungus from a marine sponge. BioMed Research International, 2019, 1–9. https://doi.org/10.1155/2019/3456164

Arora, D. K., Sikia, R., Dwievdi, R. y Smith, D. (2005). Current status, strategy and future prospects of microbial resource collections. Current Science, 89, 488–495.

Aza, P., Molpeceres, F., Ruiz-Dueñas, F. J. y Camarero, S. (2021). Heterologous expression, engineering and characterization of a novel Laccase of Agrocybe pediades with promising properties as biocatalyst. Journal of Fungi, 7, 1–24. https://doi.org/10.3390/jof7050359

Barrasa, J. M, Blanco, M. N, Esteve-Raventós, F., Altés, A., Checa, J., Martínez, A. T. et al. (2014). Wood and humus decay strategies by white-rot basidiomycetes correlate with two different dye decolorization and enzyme secretion patterns on agar plates. Fungal Genetics and Biology, 72, 106–114. https://doi.org/10.1016/j.fgb.2014.03.007

Ҁaktu, K. y Türkoğlu, E. A. (2011). Microbial culture collections: the essential resources for life. Gazi University Journal of Science, 24, 175–180.

Castaño, J. D., Muñoz-Muñoz, N., Kim, Y. M., Liu, J., Yang, L. y Schilling, J. S. (2022). Metabolomics highlights different life history strategies of white and brown rot wood-degrading fungi. MSphere, 7, e0054522. https://doi.org/10.1128/msphere.00545-22

Chakar, F. S. y Ragauskas, A. J. (2004). Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 20, 131–141. https://doi.org/10.1016/j.indcrop.2004.04.016

Contreras-Pacheco, M. M., Raymundo, T., Bautista-Hernández, S., Díaz-Moreno, R. y Valenzuela, R. (2014). Hongos corticioides del bosque Las Bayas, Municipio del Pueblo Nuevo, Durango, México. Boletín de la Sociedad Micológica de Madrid, 38, 33–40.

Contreras-Pacheco, M. M., Argüelles-Moyao, A. y Garibay-Orijel, R. (2018). Nuevos registros de hongos corticoides asociados a Abies religiosa del Estado de México. Revista Mexicana de Biodiversidad, 89, 1–14. https://doi.org/10.22201/ib.20078706e.2018.1.1605

Crowther, T. W., Boddy, L. y Jones, T. H. (2012). Functional and ecological consequences of saprophytic fungus-grazer interactions. ISME Journal, 6, 1992–2001.

https://doi.org/10.1038/ismej.2012.53

De Vero, L., Boniotti, M. B., Budroni, M., Buzzini, P., Cassanelli, S., Comunian, R. et al. (2019). Preservation, characterization and exploitation of microbial biodiversity: The perspective of the Italian Network of Culture Collections. Microorganisms, 7, 685. https://doi.org/10.3390/microorganisms7120685

Eberhardt, U., Schütz, N., Bartlett, P., Hosaka, K., Kasuya, T. y Beker, H. J. (2022). Revisiting Hebeloma (Hymenogastraceae, Agaricales) in Japan: four species recombined into other genera but three new species discovered. Mycological Progress, 21, 447–472. https://doi.org/10.1007/s11557-021-01757-x

Feckler, A., Goedkoop, W., Konschak, M., Bundschuh, R., Kenngott, K. G. J., Schulz, R. et al. (2018). History matters: Heterotrophic microbial community structure and function adapt to multiple stressors. Global Change Biology, 24, e402-e415. https://doi.org/10.1111/gcb.13859

Gi-Hong, A., Jae-Gu, H. y Jae-Han, C. (2019). Antioxidant activities, β-glucan contents of wild mushrooms Korea. Journal of Mushrooms, 17, 144–151. https://doi.org/10.14480/JM.2019.17.3.144

Gi-Hong, A. Jae-Han, C. y Jae-Gu, H. (2020). Examination of the biological activities of wild mushrooms extracts in Korea. Journal of Musrhooms, 18, 151–163. https://doi.org.10.14480/JM.2020.18.2.151

González-González, P., Gómez-Manzo, S., Tomasini, A., Martínez y Pérez, J. L., García-Nieto, E., Anaya-Hernández, A. et al. (2023). Laccase production from Agrocybe pediades: purification and functional characterization of a consistent laccase isoenzyme in liquid culture. Microoganisms, 11, 568. https://doi.org/10.3390/microorganisms11030568

Hall, T. A. (1999). BioEdit: a user-friendly biological sequences alignment editor and analysis program for Windows 97/98/NT. Nucleic Acid Symposium Series, 41, 95–98.

Herrera, T., Pérez-Silva, E. y Valenzuela, V. H. (2006). Nueva contribución al conocimiento de los macromicetos de la Reserva ecológica del Pedregal de San Ángel, D.F. México. Revista Mexicana de Biodiversidad, 77, 51–57. https://doi.org/10.22201/ib.20078706e.2006.001.317

Homolka, L. (2014). Preservation of live cultures of Basidiomycetes-recent methods. Fungal Biology, 118, 107–125. https://doi.org/10.1016/j.funbio.2013.12.002

Hudson, R., Rodríguez-Martínez, L., Distel, H., Cordero, C., Altbácker, V. y Martínez-Gómez, M. (2005). A comparison between vegetation and diet records from the wet and dry season in the cottontail rabbit Sylvilagus floridanus at Ixtacuixtla, central Mexico. Acta Theriologica, 50, 377–390. https://doi.org/10.1007/BF03192633

INEGI (Instituto Nacional de Estadística y Geografía). (2017). Anuario estadístico y geográfico de Tlaxcala 2017. Instituto Nacional de Estadística y Geografía. Ciudad de México: INEGI.

Kab-Yeul, J., Soo-Muk, C., Soon-Ja, S., Won-Sik, K., Gyu-Hyun, K. y Jae-Mo, S. (2009). Screening of biodegradable function of indigenous lingo-degrading mushrooms using dyes. Mycobiology, 37, 53–61. https://doi.org/10.4489/MYCO.2009.37.1.053

Kalyoncu, F., Oskay, M. y Kayalar, H. (2010). Antioxidant activity of the mycelium of 21 wild mushroom species. Mycology, 1, 195–199. https://doi.org/10.1080/21501203.2010.511292

Karaduman A. B., Atli B. y Yamac M. (2012). An example for comparison of storage methods of macrofungus cultures: Schizophyllum commune. Turkish Journal of Botany, 36, 205–212. https://doi.org/10.3906/bot-1102-8

Kauserud, H., Shalchian-Tabrizi, K. y Decock, C. (2007). Multilocus sequencing reveals multiple geographically structured lineages of Coniophora arida and C. olivacea (Boletales) in North America. Mycologia, 99, 705–713. https://doi.org/10.1080/15572536.2007.11832534

Madison, W. P. y Madison, D. R. (1997). Mesquite v. 3.04. Disponible en: https://mesquiteproject.org/

Magnin, A., Hoornaert, L., Pollet, E., Laurichesse, S., Phalip, V. y Avérous, L. (2018). Isolation and characterization of different promising fungi for biological waste management of polyurethanes. Microbial Biotechnology, 12, 544–555.

https://doi.org/10.1111/1751-7915.13346

Malric-Garajova S., Fortuna. F., Pion, F., Martin, E., Thottathil, A. R., Guillemain, A. et al. (2023). Modification of a marine pine Kraft Lignin sample by enzymatic treatment with a Pycnoporus cinnabarinus laccase. Molecules, 28, 4873. https://doi:10.3390/molecules28124873

Marin, C. y Kohout, P. (2021). Response of soil fungal ecological guilds to global changes. New Phytologist, 229, 656–658. https://doi.org/10.1111/NPH.17054

Mariselvi, M. y Earanna, N. (2018). Molecular identification and screening of mushrooms for antibacterial property against Pseudomonas aeruginosa and Staphylococcus aureus. Journal of Applied and Natural Science, 10, 791–796. https://doi.org/10.31018/jans.v10i2.1682

Merlin, C., Devers, M., Crouzet, O., Heraud, C., Steinberg, C., Mougin, C. et al. (2014). Characterization of chlordecone-tolerant fungal populations isolated from long-term polluted tropical volcanic soil in the French West Indies. Environmental Science and Pollution Research, 21, 4914-4927. https://doi.org/10.1007/s11356-013-1971-8

Minkyeong, K., Chorong, A. y Changmu, K. (2020). Comparisons of mycelial growth characteristics according to culture conditions of Ulleungdo Collection Strains. The Korean Journal of Mycology, 48, 75–85. https://doi.org/10.4489/KJM.20200009

Munsell Color Company. (1975). Munsell Soil Color Charts. Munsell Color Company, Baltimore.

Mygind, P. H., Fischer, R. L., Schnorr, K. M., Hansen, M. T., Sönksen, C. P., Ludvigsen, S. et al. (2005). Plectasina is a peptide antibiotic with therapeutic potential form a saprophytic fungus. Nature, 437, 975–980. https://doi.org/10.1038/nature04051

Nelson, D., Moore, J. E., Millar, B. C. y Rao, J. R. (2019). Antimicrobial properties of native Ulster macrofungi (mushrooms and toadstools) to clinical pathogens. Ulster Medical Journal, 88, 128–132.

Oliveira, J. J. S., Vargas-Isla, R., Cabral, T. S., Rodrigues, D. P. e Ishikawa, N. K. (2019). Progress on the phylogeny of the Omphalotaceae: Gymnopus s. str., Marasmiellus s. str., Paragymnopus gen. nov. and Pusillomyces gen. nov. Mycological Progress, 18, 713–739. https://doi.org/10.1007/s11557-019-01483-5

Pawlowska, J., Okrasinska, A., Kislo, K., Aleksandrzak-Piekarczyk, T., Szatraj, K., Dolatabadi, S. et al. (2019). Carbon assimilation profiles of mucoralean fungi show their metabolic versatility. Scientific Reports, 9, 11864. https://doi.org/10.1038/s41598-019-48296-w

Peay, K. G., Kennedy, P. G. y Bruns, T. D. (2008) Fungal community ecology: a hybrid beast with a molecular master. Bioscience, 58, 799–810. https://doi.org/10.1641/b580907

Petersen R. y Hughes K. (2014) New North American species of Gymnopus. North American Fungi, 9, 1–22. http://dx.doi.org/10.2509/naf2014.009.003

Petersen, R. H. y Hughes, K. W. (2019). Two additional species of Gymnopus (Euagarics, Basidiomycotina). Mycokeys, 45, 1–24. https://dor.org/10.3897/mycokeys.45.29350

Rambaut, A. (2006). figTree: Tree figure Drawing Tool. Institute of Evolutionary Biology, University of Edinburgh. Disponible en: http://tree.bio.ed.ac.uk

Philippot, L., Griffiths, B. S. y Langenheder, S. (2021). Microbial community resilience across ecosystems and multiple disturbances. Microbiology and Molecular Biology Reviews, 85, e00026-20. https://doi.org/10.1128/MMBR.00026-20

Reverchon, F., Ortega-Larrocea, M. P. y Pérez-Moreno, J. (2010). Saprophytic fungal communities change in diversity and species composition across a volcanic soil chronosequence at Sierra del Chichinautzin, Mexico. Annals of Microbiology, 60, 217–226. https://doi.org/10.1007/S13213-010-0030-7

Rzedowski, J. (2006). Vegetación de México. Ed. Digital. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México. Disponible en: https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMxPort.pdf

Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M., Bürgmann, H. et al. (2012). Fundamentals of microbial community resistence and resilience. Frontiers in Microbiology, 3, 417, 1–19. https://doi.org/10.3389/fmicb.2012.00417

Singer, R. (1986). The Agaricales in modern taxonomy. 4a Ed. Koenigstein, Alemania: Koeltz Scientific Books.

Skrede, I., Carlsen, T., Stensrud, Ø. y Kauserud, H. (2012). Genome wide AFLP markers support cryptic species in Coniophora (Boletales). Fungal Biology, 116, 778–784. https://doi.org/10.1016/j.funbio.2012.04.009

Sun, Y., Liu, Z. L., Hu, B. Y., Chen, Q. J. y Yang, A. Z., (2021). Purification and characterization of a thermo- and pH-stable laccase from the litter-decomposing fungus Gymnopus luxurians and laccase mediator systems for dye decolorization. Frontiers in Microbiology, 12, 672620. https://doi.org/doi:10.3389/fmicb.2021.672620

Thompson, J. D., Higgins, D. G. y Gibson, T. J. (1994). Clustal W: improving the sensitivity of progressive sequence alignment through sequence weighting, position specific, gaps penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Thorn, R. G., Reddy, C. A., Harris, D. y Paul, E. A. (1996). Isolation of saprophytic basidiomycetes from soil. Applied and Environmental Microbiology, 62, 4288–4292. https://doi.org/10.1128/aem.6211.4288-4292.1996

Toledo, C. V., Barroetaveña, C. y Rajchenberg, M. (2014). Fenología y variables ambientales asociadas a la fructificación de hongos silvestres comestibles de los bosques andino-patagónicos en Argentina. Revista Mexicana Biodiversidad, 85, 1093–1103. https://doi.org/10.7550/rmb.40010

Tortella, G. R., Rubilar, O., Gianfreda, L., Valenzuela, E. y Diez, M.C. (2008). Enzymatic characterization of Chilean native wood-rooting fungi for potential use in the bioremediation of pulled environments with chlorophenols. World Journal of Microbiology and Biotechnology, 24, 285. https://doi.org/10.1007/s11274-008-9810-7

Ványolós, A., Orvos, P., Chuluunbaatar, B., Tálosi, L. y Hohmann, J. (2019). GIRK channel activity of Hungarian mushrooms: From screening to biological active metabolites. Fitoterapia, 137, 104272. https://doi.org/10.1016/j.fitote.2019.104272

Voyro, S., Roussel, S., Munaut, F., Varese, G. C., Ginepro, M., Declerck, S. et al. (2009). Vitality and genetic fidelity of white-rot fungi mycelia following different methods of preservation. Mycological Research, 113, 1027–1038. https://doi.org/10.1016/j.mycres.2009.06.006

White, T. J., Bruns, T., Lee, S. y Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Cambridge: Academic Press.

Zmitrovich, I. V., Spirin, W. A. y Wasser, S. P. (2006). Variability of Byssomerulius corium in the Mediterranean. Mycotaxon, 97, 83–90.

Descargas

Publicado

2023-12-06

Número

Sección

ECOLOGÍA