Composición de la vegetación tras el establecimiento de un área natural protegida en el noroeste de México

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.5182

Palabras clave:

Conservación, Ecología del paisaje, Percepción remota

Resumen

La Reserva Jaguar del Norte es una propiedad privada ubicada en la sierra sonorense, dentro de una compleja matriz paisajística, con un amplio legado de uso ganadero. Esta región, identificada como prioritaria para la conservación, dispone de pocos datos sobre las trayectorias de cambio en la vegetación, un elemento clave para evaluar el impacto de las áreas naturales protegidas. Este trabajo presenta información acerca del efecto de las acciones con fines de conservación, sobre la composición de la vegetación tras el establecimiento de la reserva en el año 2003. Para ésto, se caracterizaron las comunidades vegetales presentes y se generaron clasificaciones supervisadas de cobertura con imágenes satelitales de mediana y alta resolución para realizar un análisis cambio de la cobertura vegetal (2003-2018). Las precisiones generales de las clasificaciones fueron iguales o superiores a 0.75, valor que aumentó al utilizar imágenes de mayor resolución espacial. El uso combinado de diferentes resoluciones espaciales presentó ventajas para entender las transiciones de composición entre diferentes comunidades vegetales. Las tendencias encontradas indicaron un aumento del matorral subtropical y una disminución del pastizal inducido, lo que refleja transformaciones hacia una mayor diversidad de especies y una reducción de posibles amenazas para la biodiversidad a nivel paisaje.

Citas

Abella, S. R., Chiquoine, L. P. y Backer, D. M. (2012). Ecological characteristics of sites invaded by buffelgrass (Pennisetum ciliare). Invasive Plant Science and Management, 59, 443–453. https://doi.org/10.1614/IPSM-D-12-00012.1

Alhaddad, B. I., Burns, M. C. y Cladera, J. R. (2007). Texture Analysis for correcting and detecting classification structures in urban land uses; Metropolitan area case study - Spain. Urban Remote Sensing Joint Event. París, Francia.

https://doi.org/10.1109/URS.2007.371811

Anderson, J. F., Hardy, E. E., Roach, J. T. y Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. Washington, USA: U.S. Geological Survey. https://doi.org/10.3133/pp964

Arneth, A. (2015). Uncertain future for vegetation cover. Nature, 524, 44–45. https://doi.org/10.1038/524044a

Arriaga, L., Espinoza, J. M., Aguilar, C., Martínez, E., Gómez, L. y Loa, E. (2000). Regiones terrestres prioritarias de México. Ciudad de México: Conabio.

Arroyo-Rodríguez, V., Moreno, C. y Galán-Acedo, C. (2017). La ecología del paisaje en México: logros, desafíos y oportunidades en las ciencias biológicas. Revista Mexicana de Biodiversidad, 8, 42–51. https://doi.org/10.1016/j.rmb.2017.10.004

Asner, G. P., Keller, M., Pereira, R. y Zweede, J. C. (2002). Remote sensing of selective logging in Amazonia: Assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis. Remote Sensing of Environment, 80, 483–496. https://doi.org/10.1016/S0034-4257(01)00326-1

Belward, A. S. y Skøien, J. O. (2015). Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 115–128. https://doi.org/10.1016/j.isprsjprs.2014.03.009

Bertzky, B., Corrigan, C., Kemsey, J., Kenney, S., Ravilious, C., Besançon, C. et al. (2012). Protected Planet Report 2012: tracking progress towards global targets for protected areas. Cambridge, UK: United Nations Environment Programme.

Bezaury-Creel, J. E. y Gutiérrez-Carbonell, D. (2009). Áreas naturales protegidas y desarrollo social en México. En J. Sarukhán, P. Koleff, J. Carabias, J. Soberón, R. Dirzo, J. Llorente-Bousquets et al. (Eds.). Capital natural de México vol. II. Estado de conservación y tendencias de cambio (pp. 385–431). Ciudad de México: Conabio.

Borda-de Água, L. (2019). The importance of scaling in biodiversity. En E. Casetta, J. Marques-da Silva y D. Vecchi (Eds.), From assessing to conserving biodiversity, conceptual and practical challenges (pp. 107–122). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-10991-2_5

Braun-Blanquet, J. (1932). Plant Sociology, the study of plant communities. New York: McGraw-Hill Book Company.

Breiman, L., Friedman, J. H., Olshen, R. A. y Stone, C. G. (1984). Classification and regression trees. California: Taylor & Francis. https://doi.org/10.1201/9781315139470

Briones, O., Burquez, A., Martinez-Yrizar, A., Pavón, N. P. y Perroni, Y. (2018). Biomasa y productividad en las zonas áridas mexicanas. Madera y Bosques, 24, e2401898. https://doi.org/10.21829/myb.2018.2401898

Canfield, R. H. (1941). Application of the line interception method in sampling range vegetation. Journal of Forestry, 39, 388–394.

Caracciolo D., Istanbulluoglu, E., Valerio-Noto, L. y Collins, S. L. (2016). Mechanisms of shrub encroachment into Northern Chihuahuan Desert grasslands and impacts of climate change investigated using a cellular automata model. Advances in Water Resources, 91, 46–62. https://doi.org/10.1016/j.advwatres.2016.03.002

Castellanos-Villegas, A. Yanes, G. y Valdez-Zamudio, D. (2002). Drougth-tolerant exotic buffelgrass and desertification. En B. Tellman (Ed.), Weeds across borders: Proceedings of a North American Conference Held in Tucson, Arizona (pp. 99–112), Arizona: Arizona-Sonora Desert Museum.

Choza-Farías, S., Romo-León, J. R. y Castellanos-Villegas, A. E. (2021). Análisis de la respuesta productiva ante la variabilidad climática en tipos de vegetación exótica y nativa del Desierto Sonorense. Revista Chapingo, 20, e2021203. https://doi.org/10.5154/r.rchsza.2021.20.3

Coetzee, B. W. T. (2017). Evaluating the ecological performance of protected areas. Biodiversity and Conservation, 26, 231–236. https://doi.org/10.1007/s10531-016-1235-2

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. https://doi.org/10.1177/001316446002000104

Collins, J. B. y Woodcock, C. E. (1996). An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data. Remote Sensing of Environment, 56, 66–77. https://doi.org/10.1016/0034-4257(95)00233-2

Conaza (Comisión Nacional de las Zonas Áridas). (1994). Mezquite (Prosopis spp.). Cultivo alternativo para las zonas áridas y semiáridas de México. Ciudad de México: Conaza.

Conanp (Comisión Nacional de Áreas Naturales Protegidas). (2019). Resiliencia Áreas Naturales Protegidas: soluciones naturales a retos globales. Ciudad de México: Conanp - PNUD en México y Proyecto Resiliencia.

De la Barrera, E. (2008). Recent invasion of buffel grass (Cenchrus ciliaris) of a natural protected area from the southern Sonoran Desert. Revista Mexicana de Biodiversidad, 79, 385–392. https://doi.org/10.22201/ib.20078706e.2008.002.562

Duan, P., Wang, Y. y Peng, Y. (2020). Remote sensing applications in monitoring of protected areas: A Bibliometric Analysis. Remote Sensing, 12, 772. https://doi.org/10.3390/rs12050772

Durand, L. y Jiménez, J. (2010). Sobre áreas naturales protegidas y la construcción de no-lugares, Notas para México. Revista Lider, 16, 59–72.

Duveiller, G., Hooker, J. y Cescatti, A. (2018). A dataset mapping the potential biophysical effects of vegetation cover change. Scientific Data, 5, 180014. https://doi.org/10.1038/sdata.2018.14

Ferreira, S., Daemane, M., Deacon, A., Sithole, H. y Bezuidenhout, H. (2013). Efficient evaluation of biodiversity concerns in protected areas. International Journal of Biodiversity, 2013, 298968. https://doi.org/10.1155/2013/298968

Flores-Olvera, H. (2011). Las zonas áridas y semiáridas de México, las menos exploradas. Ciudad de México: Boletín UNAM-DGCS-763.

Freitas, J. R. y Mantovania, W. (2017). An overview of the applicability of functional diversity in Biological Conservation. Brazilian Journal of Ecology, 78, 517–524. https://doi.org/10.1590/1519-6984.09416

Fuente, B., Weynants, M., Bertzky, B., Giacomo, D., Mandrici, A., Bendito, E. et al. (2019). Land productivity dynamics in and around protected areas globally from 1999 to 2013. Plos One, 15, e0224958. https://doi.org/10.1371/journal.pone.0224958

Fung, T. y LeDrew, E. (1987). Application of principal components analysis to change detection. Photogrammetric engineering and remote sensing, 53, 1649–1658.

Gaston, K., Jackson, S., Cantú-Salazar, L. y Cruz-Piñón, G. (2008). The ecological performance of Protected Areas. Annual Review of Ecology Evolution and Systematics, 39, 93–113. https://doi.org/10.1146/annurev.ecolsys.39.110707.173529

Gross, J., Goetz, S. y Cihlar, J. (2009). Application of remote sensing to parks and protected area monitoring: Introduction to the special issue. Remote Sensing of Environment, 113, 1343–1345. https://doi.org/10.1016/j.rse.2008.12.013

Guerra, C. A., Rosa, I. M. D. y Pereira, H. M. (2019). Change versus stability: are protected areas particularly pressured by global land cover change? Landscape Ecology, 34, 2779–2790. https://doi.org/10.1007/s10980-019-00918-4

Henle, K., Potts, S., Kunin, W., Matsinos, Y., Simila, J., Pantis, J. et al. (2014). Scaling in Ecology and Biodiversity Conservation. Sofía, Bulgaria: Pensoft Publishers. https://doi.org/10.3897/ab.e1169

Hernández-Moreno, M. M., Téllez-Valdés, O., Martínez-Meyer, E., Islas-Saldaña, L. A., Salazar-Rojas, V. M. y Macías-Cuéllar, H. (2021). Distribución de la cobertura vegetal y del uso del terreno del municipio de Zapotitlán, Puebla, México. Revista Mexicana de Biodiversidad, 92, e923649. https://doi.org/10.22201/ib.20078706e.2021.92.3649

Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427–432. https://doi.org/10.2307/1934352

Houborg, R., Fisher, J. B. y Skidmore, A. K. (2015). Advances in remote sensing of vegetation function and traits. International Journal of Applied Earth Observation and Geoinformation, 43, 1–6. https://doi.org/10.1016/j.jag.2015.06.001

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309. https://doi.org/10.1016/0034-4257(88)90106-x

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. y Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. https://doi.org/10.1016/s0034-4257(02)00096-2

Ibarra-Flores, F. A., Martín-Rivera, M. H., Denogean-Ballesteros, F. G. y Aguirre-Murrieta, R. (2009). Buffelgrass, cattle, and the Sonoran Desert. En T. R. Van Devender, F. J. Espinosa-García, B. L. Harper-Lore y T. Hubbard (Eds.), Invasive plants on the move: controlling them in North America (pp. 375–381). Tucson, AZ: Arizona-Sonora Desert Museum.

INEGI (Instituto Nacional de Estadística y Geografía). (2014). Guía para la interpretación de cartografía: uso del suelo y vegetación: escala 1:250,000: serie V. Ciudad de México: INEGI.

Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C. et al. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574–577. https://doi.org/10.1038/nature15374

Jackson, J. (2005). Is there a relationship between herbaceous species richness and buffel grass (Cenchrus ciliaris)? Austral Ecology, 30, 505–517. https://doi.org/10.1111/j.1442-9993.2005.01465.x

Jantz, S. M., Barker, B., Brooks, T. M., Chini, L. P., Huang, Q., Moore, R. M. et al. (2015). Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conservation Biology, 29, 1122–1131. https://doi.org/10.1111/cobi.12549

Jensen, J. R. (2005). Introductory digital image processing: a remote sensing perspective. New Jersey, USA: Pearson.

Kamwi, J., Kätsch, C., Graz, F., Chirwa, P. y Manda, S. (2017). Trends in land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Environmental Monitoring and Assessment, 189, 242. https://doi.org/10.1007/s10661-017-5934-2

Koch, M., Schröder, B., Günther, A., Albrecht, K., Pivarci, R., Jurasinski, G. et al. (2017). Taxonomic and functional vegetation changes after shifting management from traditional herding to fenced grazing in temperate grassland communities. Applied Vegetation Science, 20, 259–270. https://doi.org/10.1111/avsc.12287

Kumar, N., Yamaç, S. y Murugan, A. (2015). Applications of remote sensing and GIS in natural resource management. The Andaman Science Association, 20, 1–6.

Kumar-Verma, A. (2016). Biodiversity: its different levels and values. International Journal on Environmental Sciences, 7, 143–145.

Landis, J. R. y Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159−174. https://doi.org/10.2307/2529310

Lin-Quintana, L. E. (2017). Análisis de la disponibilidad de agua de lluvia en el Estado de Sonora (Tesis). Universidad Nacional Autónoma de México, Ciudad de México.

Lv, Z., Liu, T., Benediktsson, J. A. y Falco, N. (2022). Land cover change detection techniques: very-high-resolution optical images: a review. IEEE Geoscience and Remote Sensing Magazine, 10, 44–63. https://doi.org/10.1109/MGRS.2021.3088865

Ma, L., Li, M., Ma, X., Cheng, L., Du, P. y Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277–293. https://doi.org/10.1016/j.isprsjprs.2017.06.001

Maass, J. M., Jardel, E. J., Martínez-Yrízar, A., Calderón-Aguilera, L. E., Herrera, J., Castillo, A. (2010). Las áreas naturales protegidas y la investigación ecológica de largo plazo en México. Ecosistemas, 19, 69–83.

Maestre, F. T., Benito, B. M., Berdugo, M., Concostrina-Zubiri, L., Delgado-Baquerizo, M., Eldrige, D. J. et al. (2021). Biogeography of global drylands. New Phytologist, 231, 540–558. https://doi.org/10.1111/nph.17395

McDonald, S., Reid, N., Smith, R., Waters, C., Hunter, J. y Rader, R. (2019). Comparison of biodiversity and ground cover between a commercial rotationally grazed property and an adjacent nature reserve in semi‐arid rangeland. Austral Ecology, 45, 60–69. https://doi.org/10.1111/aec.12829

Miller, J. E. D., Damschen, E. I., Harrison, S. P. y Grace, J. B. (2015). Landscape structure affects specialists but not generalists in naturally fragmented grasslands. Ecology, 96, 3323–3331. https://doi.org/10.1890/15-0245.1

Morales-Romero, D., López-García, H., Martínez-Rodríguez, J. y Molina-Freaner, F. (2019). Documenting a plant invasion: the influence of land use on buffelgrass invasion along roadsides in Sonora, Mexico. Journal of Arid Environments, 164, 53–59. https://doi.org/10.1016/j.jaridenv.2019.01.012

Northern Jaguar Project. (2022). Northern Jaguar Reserve. Recuperado el 20 noviembre, 2014 de: https://www.northernjaguarproject.org/northern-jaguar-reserve/

Oehri, J., Schmid, B., Schaepman-Strub, G. y Niklaus, P. A. (2020). Terrestrial land-cover type richness is positively linked to landscape-level functioning. Nature Communications, 11, 154. https://doi.org/10.1038/s41467-019-14002-7

Olsson, A. D., Betancourt, J. L., Crimmins, M. A. y Marsh, S. E. (2012). Constancy of local spread rates for buffel grass (Pennisetum ciliare L.) in the Arizona Upland of the Sonoran Desert. Journal of Arid Environments, 87, 136–143. https://doi.org/10.1016/j.jaridenv.2012.06.005

Piccinelli, S., Brusa, G. y Cannone, N. (2020). Climate warming accelerates forest encroachment triggered by land use change: A case study in the Italian Prealps (Triangolo Lariano, Italy). Catena, 195, 104870. https://doi.org/10.1016/j.catena.2020.104870

Planet Team. (2017). Planet application program interface: in space for Life on Earth. San Francisco, CA. https://api.planet.com/

Poiani, K. A., Richter, B. D., Anderson, M. G. y Richter, H. E. (2000). Biodiversity conservation at multiple scales: functional sites, landscapes, and networks. BioScience, 50, 33–146, https://doi.org/10.1641/0006-3568(2000)050[0133:BCAMSF]2.3.CO;2

R Core Team. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ramachandra, T. V., Setturu, B. y Gupta, N. (2018). Modelling landscape dynamics with LST in protected areas of Western Ghats, Karnataka. Journal of Environmental Management, 15, 1253–1262. https://doi.org/10.1016/j.jenvman.2017.08.001

Ramírez-Arce, D. G., Ochoa-Ochoa, L. M. y Lira-Noriega, A. (2022). Effect of landscape composition and configuration on biodiversity at multiple scales: a case study with amphibians from Sierra Madre del Sur, Oaxaca, Mexico. Landscape Ecology, 37, 1973–1986. https://doi.org/10.1007/s10980-022-01479-9

Rimal, B., Sharma, R., Kunwar, R., Keshtkar, H., Stork, N. E., Rijal, S. et al. (2019). Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosystem Services, 38, 100963. https://doi.org/10.1016/j.ecoser.2019.100963

Robinson, C., Hou, L., Malkin, K., Soobitsky, R., Czawlytko, J., Dilkina, B. et al. (2019). Large scale high-resolution land cover mapping with multi-resolution data. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 12718–12727). Long Beach, CA, USA. https://doi.org/10.1109/CVPR.2019.01301

Romo-León, J. R., van Leeuwen, W. J. D. y Castellanos-Villegas, A. (2014). Using remote sensing tools to assess land use transitions in unsustainable arid agro-ecosystems. Journal of Arid Environments, 106, 27–35. https://doi.org/10.1016/j.jaridenv.2014.03.002

Rzedowski, J. (1978). Vegetación de México. Ciudad de México: Limusa.

Rzedowski, J. y McVaugh, R. (1966). La vegetación de Nueva Galicia. BioStor, 9, 1–123.

Seager R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G. et al. (2007). Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 1181–1184. https://doi.org/10.1126/science.1139601

Sharma, R., Eklund, J., Barnes, M., Geldman, J., Schleicher, J., Pressey, R. L. et al. (2020). The impact of terrestrial protected areas on vegetation extent and condition: a systematic review protocol. Environmental Evidence, 9, 8. https://doi.org/10.1186/s13750-020-00191-y

Siller-Clavel, P., Badano, E. I., Villarreal-Guerrero, F., Prieto-Amparán, J. A., Pinedo-Álvarez, A., Corrales-Lerma, R. et al. (2022). Distribution Patterns of Invasive Buffelgrass (Cenchrus ciliaris) in Mexico Estimated with Climate Niche Models under the Current and Future Climate. Plants, 11, 1160. https://doi.org/10.3390/plants11091160

Sokolov, A., Sokolova, G., Bairambekov, S. y Boeva, T. (2020). Change in species composition of vegetation on various-aged set-aside lands of the Volga Delta. E3S Web of Conferences, 64, 07015. https://doi.org/10.1051/e3sconf/202016407015

Story, M. H. (1986). Accuracy assessment: a user's perspective. Photogrammetric Engineering and Remote Sensing, 52, 397–399.

Tropical Rainfall Measuring Mission (TRMM). (2011). TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). Recuperado el 07 abril, 2020 de: https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary

Tso, B. y Mather, M. P. (2009). Classification methods for remotely sensed data. Washington, D.C.: CRC Press.

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150. https://doi.org/10.1016/0034-4257(79)90013-0

Turner M. G. y Gardner, R. H. (2015). Landscape Ecology in theory and practice: pattern and process. New York: Springer.

UACh (Universidad Autónoma de Chihuahua). (2011). Actualización de la delimitación de las zonas áridas, semiáridas y subhúmedas de México, a escala regional. Reporte final de proyecto de investigación. Ciudad de México: Universidad Autónoma Chapingo.

USGS (United States Geological Survey). (2022). EarthExplorer. Recuperado el 13 junio, 2020, de: https://earthexplorer.usgs.gov/

van Leeuwen, W. J., Huete, A. R. y Laing, T. W. (1999). MODIS vegetation index compositing approach: A prototype with AVHRR data. Remote Sensing of Environment, 69, 264–280. https://doi.org/10.1016/s0034-4257(99)00022-x

Wang, Y., Lu, Z., Sheng, Y. y Zhou, Y. (2020). Remote sensing applications in monitoring of protected areas. Remote Sensing, 12, 1370. https://doi.org/10.3390/rs12091370

Willis, K. S. (2015). Remote sensing change detection for ecological monitoring in United States protected areas. Biological Conservation, 182, 233–242. https://doi.org/10.1016/j.biocon.2014.12.006

WWF (World Wide Fund for Nature). (2020). Living Planet Report 2020 - Bending the curve of biodiversity loss. Gland, Switzerland: WWF.

Zhang, Y., Tariq, A., Hughes, A. C., Hong, D., Wei, F., Sun, H. et al. (2022). Challenges and solutions to biodiversity conservation in arid lands. Science of The Total Environment, 857, 159695. https://doi.org/10.1016/j.scitotenv.2022.159695

Zhou, Q. (2016). Digital elevation model and digital surface model. En D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu, y A. R. Marston (Eds.), The International Encyclopedia of Geography (pp. 1–17). Oxford, UK: Wiley-Blackwell.

Descargas

Publicado

2023-11-07

Número

Sección

CONSERVACIÓN