Diversidad y distribución de larvas de Odonata (Insecta) en una laguna subtropical con diferentes usos de suelo en Veracruz, México

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.5158

Palabras clave:

Libélulas, Estados inmaduros, Ensamblajes, Zona urbana, Zona rural, Calidad del agua

Resumen

Los daños por actividades humanas a los cuerpos de agua dulce tropicales y subtropicales se han incrementado en
las últimas décadas. Aquí estudiamos los efectos del uso del suelo sobre la fisicoquímica del agua y en la diversidad de
larvas de Odonata en una laguna subtropical. Durante 1 año se midieron variables fisicoquímicas y se colectaron larvas
de Odonata en 8 sitios (4 en la zona urbana y 4 en la rural más conservada) con diferente uso de suelo en la periferia
de la laguna. Fisicoquímicamente, no se agruparon las muestras de ambas zonas y sitios, la agrupación atendió a la
temporalidad. Se colectaron 28 especies, algunas de ellas mostraron una distribución diferencial entre ambas zonas,
y entre los 8 sitios y las colectas. La mayor diversidad se registró en la zona rural. El sitio con descargas domésticas
fue el más pobre en diversidad y mostró mayores concentraciones de nitratos y amonio. Creemos que el efecto de los usos del suelo sobre la diversidad de odonatos en la laguna es aún incipiente. Se recomienda el desvío y tratamiento de las aguas urbanas y el uso adecuado del suelo para mantener la diversidad de Odonata.

Citas

Al-Shami, S. A., Rawi, C. S. M., Ahmad, A. H., Hamid, S. A., & Nor, S. A. M. (2011). Influence of agriculture, industrial and anthropogenic stresses on the distribution and diversity of macroinvertebrates in Juru River Basin, Penang, Malaysia. Ecotoxicology and Environmental Safety, 74, 1195–1202. https://doi.org/10.1016/j.ecoenv.2011.02.022

Altamiranda-S, M., Pérez, G. L. A., & Gutiérrez, M. L. C. (2010). Composición y preferencia de microhábitat de larvas de Odonata (Insecta), en la ciénaga de San Juan de Tocagua (Atlántico, Colombia). Caldasia, 32, 399–410.

Andersson, D. (2006). Effect of the diversity, ecology and composition of species of fish on the odonate community (M. Sc. Thesis). Halmstad University, Sweden.

APHA, (1998). Standard methods for the examination of water and wastewater. Washington, DC.: American Public Health Association.

Arbuckle, K. E., & Downing, J. A. (2001). The influence of watershed land use on lake N:P in a predominantly agricultural landscape. Limnology and Oceanography, 46, 970–975. https://doi.org/10.4319/lo.2001.46.4.0970

Astudillo, M. R., Novelo-Gutiérrez, R., Vázquez, G., García-Franco, J. G., & Ramírez, A. (2016). Relationships between land cover, riparian vegetation, stream characteristics, and aquatic insects in cloud forest streams. Mexico. Hydrobiologia, 768, 167–181. https://doi.org/10.1007/s10750-015-2545-1

Balzan, M. V. (2012). Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatiotemporal approach. Journal of Insect Science, 12, 1-18. https://doi.org/10.1673/031.012.8701

Brauns, M., García, X. F., & Pusch, M. T. (2008). Potential effects of water-level fluctuations on littoral invertebrates in lowland lakes. Hydrobiologia, 613, 5–12. https://doi.org/10.1007/978-1-4020-9192-6_2

Brylinsky, M. (2004). User’s manual for prediction of Phosphorus concentration in Nova Scotia lakes: a tool for decision making. Nova Scotia: Nova Scotia Department of Environment and Labour.

Bota-Sierra, C. A., Flórez, V. C., Escobar, F., Sandoval, H. J., Novelo-Gutiérrez, R., Londoño, G. A. et al. (2021). The importance of tropical mountain forests for the conservation of dragonfly biodiversity: a case from the Colombian Western Andes. International Journal of Odonatology, 24, 233–247. https://doi.org/10.23797/2159-6719_24_18

Bulánková, E. (1997). Dragonflies (Odonata) as bioindicators of environment quality. Biologia, Bratislava, 52, 177–180.

Butler, R. G., & de Maynadier, P. G. (2008). The significance of littoral and shoreline habitat integrity to the conservation of lacustrine damselflies (Odonata). Journal of Insect Conservation, 12, 23–36. https://doi.org/10.1007/s10841-006-9059-0

Campbell, W. B., Novelo-Gutiérrez, R., & Gómez-Anaya, J. A. (2010). Distributions of odonate richness and diversity with elevation depend on windward or leeward aspect: implications for research and conservation planning. Insect Conservation and Diversity, 3, 302–312. https://doi.org/10.1111/j.1752-4598.2010.00108.x

Carchini, G., Della Bella, V., Solimini, A. G., & Bazzanti, M. (2007). Relationships between the presence of odonate species and environmental characteristics in lowland ponds of central Italy. Annales de Limnologie - International Journal of Limnology, 43, 81–87. https://doi.org/10.1051/limn/2007020

Catling, P. M., (2005). A potential for the use of dragonfly (Odonata) diversity as a bioindicator of the efficiency of sewage lagoons. The Canadian Field Naturalist, 119, 233–237. https://doi.org/10.22621/cfn.v119i2.111

Colding J., Lundberg, J., Lundberg, S., & Andersson, E. (2009). Golf courses and wetland fauna. Ecological Applications, 19, 1481–1491. https://doi.org/10.1890/07-2092.1

Conagua (Comisión Nacional del Agua). (2022). Normales Climatológica por Estado [en línea]. Disponible en: https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=ver

Corbet, P. S. (1999). Dragonflies: behavior and ecology of Odonata. Ithaca, N.Y.: Cornell University Press. https://doi.org/10.1016/s0006-3207(99)00178-0

De la Torre, A., Domínguez, L., González, M., Aguayo, S., Carballo, M., & Muñoz, M. J. (2004). Impact from a cattle waste lagoon rupture on a downstream fish farm: a case study. Ecología Austral, 14, 135–139.

De Paiva-Silva, D., de Marco, P., & Chaves-Resende, D. 2010. Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: A case study. Ecological Indicators, 10, 744–752. https://doi.org/10.1016/j.ecolind.2009.12.004

Dolný A., Harabiš, F., Bárta, D., & Lhota, S. (2012). Aquatic insects indicate terrestrial habitat degradation: changes in taxonomical structure and functional diversity of dragonflies in the tropical rainforest of East Kalimantan. Tropical Zoology, 25, 37–41. https://doi.org/10.1080/03946975.2012.717480

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. México D.F.: Instituto de Geografía, UNAM.

García-García, P. L., Vázquez, G., Novelo-Gutiérrez, R., & Favila, M. E. (2017). Effects of land use on larval Odonata assemblages in cloud forest streams in central Veracruz, Mexico. Hydrobiologia, 785, 19–33. https://doi.org/10.1007/s10750-016-2900-x

Goertzen D., & Suhling, F. (2013). Promoting dragonfly diversity in cities: major determinants and implications for urban pond design. Journal of Insect Conservation, 17, 399–409. https://doi.org/10.1007/s10841-012-9522-z

Guillermo-Ferreira, R., & Del-Claro, K. (2011). Oviposition site selection in Oxyagrion microstigma Selys, 1876 (Odonata: Coenagrionidae) is related to aquatic vegetation structure. International Journal of Odonatology, 14, 275–279. https://doi.org/10.1080/13887890.2011.621109

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

Hann, B. (1995). Invertebrate associations with submersed aquatic plants in a prairie wetland. UFS (Delta Marsh) Annual Report, 30, 78–84.

Hernández, K. M., Reece, B. A., & McIntyre, N. E. (2006). Effects of anthropogenic land use on Odonata in playas of the Southern High Plains. Western North American Naturalist, 66, 273–278. https://doi.org/10.3398/1527-0904(2006)66[273:eoaluo]2.0.co;2

Honkanen, M., Sorjanen, A., & Monkkonen, M. (2011). Deconstructing responses of dragonfly species richness to area, nutrient, water plant diversity and forestry. Oecologia, 66, 457–467. https://doi.org/10.1007/s00442-010-1846-3

Hornung, J. P., & Rice, C. L. (2002). Odonata and wetland quality in southern Alberta, Canada: a preliminary study. Odonatologica, 32, 119–129.

Johannsen, S. S., & Armitage, P. (2010). Agricultural practice and the effects of agricultural land-use on water quality. Freshwater Biological Association. Freshwater Forum, 28, 45–59.

Lee-Foote, A., & Rice-Hornung, C. L. (2005). Odonates as biological indicators of grazing effects on Canadian prairie wetlands. Ecological Entomology, 30, 273–283. https://doi.org/10.1111/j.0307-6946.2005.00701.x

Mamun, Md., Sang-Jae, L., & Kwang-Guk, A. (2018). Temporal and spatial variation of nutrients, suspended solids, and chlorophyll in Yeongsan watershed. Journal of Asia-Pacific Biodiversity, 11, 206–216. https://doi.org/10.1016/j.japb.2018.02.006

McCune, B., & Mefford, M. J. (2011). PC-ORD. Multivariate analysis of ecological data. Version 6. MjM Software, Gleneden Beach, Oregon, U.S.A.

Meeks, J. (1974). Chlorophylls. In P. Stewart (Ed.), Algal physiology and biochemistry. Oxford: Blackwell.

Obregón-Barbosa, H. (1990). Análisis taxonómico y zoogeográfico de los peces de la zona norte y centro del estado de Veracruz, México (M. Sc. Thesis). Facultad de Ciencias Biológicas., Universidad Autónoma de Nuevo León. México.

Oliveira-Junior, J. M. B., De Marco J. P., Dias-Silva, K., Pereira-Leitão, R., Gontijo-Leal, C., Santos-Pompeu, P. et al. (2017). Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica, 66, 31–39. https://doi.org/10.1016/j.limno.2017.04.007

Oliveira-Junior, J. M. B., & Juen, L. (2019). The Zygoptera/Anisoptera ratio (Insecta: Odonata): a new tool for hábitat alterations assessment in Amazonian streams. Neotropical Entomology, 48, 552–560. https://doi.org/10.1007/s13744-019-00672-x

Oliveira‐Junior, J. M. B., Shimano, Y., Gardner, T. A., Hughes, R. M., De Marco-Júnior, P., & Juen, L. (2015). Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecology, 40, 733–744. https://doi.org/10.1111/aec.12242

Pathak, H., & Pathak, D. (2012). Eutrophication: Impact of Excess Nutrient Status in Lake Water Ecosystem. Journal of Environmental & Analytical Toxicology, 2, 1–5. https://doi.org/10.4172/2161-0525.1000148

Pires, M. M., Sahlén, G., & Périco, E. (2022). Agricultural land use affects the heterogeneity of Odonata communities in the Brazilian Pampa, Journal of Insect Conservation, 26, 503–514. https://doi.org/10.1007/s10841-021-00349-0

Santos, J. C. N., Andrade, E. M., Araújo, E. M., Meireles, J. R. N. C. M., & Palacio, H. A. Q. (2014). Land use and trophic state dynamics in a tropical semi-arid reservoir. Revista Ciência Agronômica, 45, 35–44. https://doi.org/10.1590/s1806-66902014000100005

Seitzinger, S. P., Harrison, E., Dumont, J. A., Beusen, A. H. W., & Bouwman, A. F. (2005). Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of global nutrient export from watersheds (NEWS) models and their application. Global Biogeochemical Cycles, 19, 1–11. https://doi.org/10.1029/2005gb002606

Silva, L. F. R., Castro, D. M. P., Juen, L., Callisto, M., Hughes, R. M. & Hermes, M. G. (2021). Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecological Indicators, 133, 108367. https://doi.org/10.1016/j.ecolind.2021.108367

StatSoft. (2006). STATISTICA (data analysis software system and computer program manual) Version 7.1. StatSoft Inc., Tulsa.

Subramanian, K. A., Ali, S., & Ramachandra, T. V. (2008). Odonata as indicators of riparian ecosystem health a case study from southwestern Karnataka, India. Fraseria (N.S.), 7, 83–95.

Tafangenyasha, C., & Dube, L. T. (2008). An Investigation of the Impacts of Agricultural Runoff on the Water Quality and Aquatic Organisms in a Lowveld Sand River System in Southeast Zimbabwe. Water Resources Management, 22, 119–130. https://doi.org/10.1007/s11269-006-9147-7

Ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO Reference manual and CanoDraw for Windows user’s guide: Software for Canonical Community Ordination (version 4.5). Ithaca, Microcomputer Power.

Thomaz, S. M., & Cunha, E. R. (2010). The role of macrophytes in habitat structuring in aquatic ecosystems: Mmethods of measurement, causes and consequences on animal assemblages, composition, and biodiversity. Acta Limnologica Brasiliensia, 22, 218–236. https://doi.org/10.4322/actalb.02202011

Tognelli, M. F., Lasso, C. A., Bota-Sierra, C. A., Jimenez-Segura, L. F., & Cox, N. A. (Editores). (2016). Estado de conservación y distribución de la biodiversidad de agua dulce en los Andes Tropicales. Gland, Suiza, Cambridge, UK y Arlington, USA: UICN. https://doi.org/10.2305/iucn.ch.2016.02.en

Toner, P., Bowman, J., Clabby, K., Lucey, J., McGarrigle, M., Concannon, C. et al. (2005). Water quality in Ireland 2001-2003. Johnstown Castle: Environment Protection Agency.

Verdonschot, R. C. M., & Peeters, E. T. H. M. (2012). Preference of larvae of Enallagma cyathigerum (Odonata: Coenagrionidae) for habitats of varying structural complexity. European Journal of Entomology, 109, 229–234. https://doi.org/10.14411/eje.2012.030

Vilenica, M., & Mihaljevic, Z. (2022). Odonata assemblages in anthropogenically impacted habitats in the Drava River —a long-term study. Water, 14, 3119. https://doi.org/10.3390/w14193119

Westfall, M. J., & May, M. L. (1996). Damselflies of North America. Gainesville, Florida: Scientific Publishers.

Whiles, M. R., Brock, B. L., Franzen, A. C., & Dinsmore II, S. C. (2000). Stream invertebrate communities, water quality, and land-use patterns in an Agricultural Drainage Basin of Northeastern Nebraska, USA. Environmental Management, 26, 563–576. https://doi.org/10.1007/s002670010113

Williams-Linera, G. (2007). El bosque de niebla del centro de Veracruz: ecología, historia y destino en tiempos de fragmentación y cambio climático. Xalapa: Instituto de Ecología, A.C./ Conabio.

Zedler, J. B., & Kercher, S. (2005). Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30, 39–74. https://doi.org/10.1146/annurev.energy.30.050504.144248

Descargas

Publicado

2023-08-18

Número

Sección

ECOLOGÍA