Caracterización del genoma mitocondrial y filogenia del complejo Stenopelmatus talpa del centro de México (Orthoptera: Stenopelmatidae: Stenopelmatini)

Autores/as

  • Paola Xanath Ruiz-Mendoza Universidad Nacional Autónoma de México
  • Jovana M. Jasso-Martínez Smithsonian Institution https://orcid.org/0000-0001-6497-7150
  • Jorge Gutiérrez-Rodríguez Estación Biológica de Doñana
  • Ernesto Samacá-Sáenz Universidad Nacional Autónoma de México
  • Alejandro Zaldívar-Riverón Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.5094

Palabras clave:

Eje Neovolcánico Transversal;, Ensifera, Mesoamérica, Código de barras de ADN

Resumen

El grupo de especies Stenopelmatus talpa (Stenopelmatidae) agrupa a ortópteros similares en apariencia grillos distribuidos en la provincia morfotectónica del Eje Neovolcánico Transversal (ENT) y áreas adyacentes en el centro de México. A pesar de esfuerzos recientes, la taxonomía y las relaciones evolutivas de los miembros de este complejo aún están lejos de conocerse por completo. En este trabajo se caracteriza el genoma mitocondrial de 14 ejemplares del grupo de especies S. talpa y se evalúan sus límites de especie utilizando el marcador mitocondrial cox1. Con base en la secuencia completa del genoma mitocondrial se reconstruyeron las relaciones filogenéticas del grupo y se hicieron inferencias sobre su historia biogeográfica. Se delimitaron un total de 9 especies con base en un criterio de 2% de divergencia, las cuales fueron consistentes con nuestra reconstrucción filogenética. Las relaciones obtenidas para el grupo de especies S. talpa fueron similares, aunque con estimaciones de tiempos de divergencia más recientes a las obtenidas en un estudio filogenético anterior, lo que sugiere que su origen y subsecuente diversificación en el ENT siguió un patrón este-centro, ocurriendo el evento de divergencia más temprano entre el Plioceno tardío y el Pleistoceno temprano.

Citas

Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E. et al. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.

Bae, J. S., Kim, I., Sohn, H. D., & Jin, B. R. (2004). The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Molecular Phylogenetics and Evolution, 32, 978–985. https://doi.org/10.1016/j.ympev.2004.03.009

Ballard, J. W. O., & Pichaud, N. (2014). Mitochondrial DNA: more than an evolutionary bystander. Functional Ecology, 28, 218–231. https://doi.org/10.1111/1365-2435.12177

Ballard, J. W. O., & Rand, D. M. (2005). The population biology of mitochondrial DNA and its phylogenetic implications. Annual Review of Ecology, Evolution, and Systematics, 36, 621–642. https://doi.org/10.1146/annurev.ecolsys.36.091704.175513

Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G. et al. (2013). MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69, 313–319. https://doi.org/10.1016/j.ympev.2012.08.023

Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids Research, 27, 1767–1780. https://doi.org/10.1093/nar/27.8.1767

Boore, J. L., Collins, T. M., Stanton, D., Daehler, L. L., & Brown, W. M. (1995). Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature, 376, 163–165. https://doi.org/10.1038/376163a0

Boore, J. L., Lavrov, D. V., & Brown, W. M. (1998). Gene translocation links insects and crustaceans. Nature, 392, 667–668. https://doi.org/10.1038/33577

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D. et al. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. Plos Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537

Cameron, S. L. (2014). Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59, 95–117. https://doi.org/10.1146/annurev-ento-011613-162007

Cigliano, M. M., Braun, H., Eades, D. C., & Otte, D. (2022). Orthoptera Species File. Version 5.0/5.0. [6th of November, 2022]. http://Orthoptera.SpeciesFile.org

DeSalle, R., Schierwater, B., & Hadrys, H. (2017). MtDNA: The small workhorse of evolutionary studies. Frontiers in Bioscience, 22, 873–887. https://doi.org/10.2741/4522

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. Plos Biology, 4, e88. https://doi.org/10.1371/journal.pbio.0040088

Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. https://doi.org/10.1093/molbev/mss075

Fenn, J. D., Song, H., Cameron, S. L., & Whiting, M. F. (2008). A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Molecular Phylogenetics and Evolution, 49, 59–68. https://doi.org/10.1016/j.ympev.2008.07.004

Ferrari, L., Orozco-Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122–149. https://doi.org/10.1016/j.tecto.2011.09.018

Glenn, T. C., Nilsen, R. A., Kieran, T. J., Finger, J. W., Pierson, T. W., Bentley, K. E. et al. (2016). Adapterama I: universal stubs and primers for thousands of dual-indexed Illumina libraries (iTru & iNext). PeerJ, 7, e775. https://doi.org/10.7717/peerj.7755

Gómez-Tuena, A., Orozco-Esquivel, M. T., & Ferrari, L. (2007). Igneous petrogenesis of the Trans-Mexican volcanic belt. Geological Society of America Special Papers, 422, 129–181. https://doi.org/10.18268/bsgm2005v57n3a2

Gorochov, A. V. (2021). The Families Stenopelmatidae and Anostostomatidae (Orthoptera). 1. Higher Classification, new and little known taxa. Entomological Review, 100, 1106–1151. https://doi.org/10.1134/S0013873820080084

Gutiérrez-Rodríguez, J., Zaldívar-Riverón, A., Weissman, D. B., & Vandergast, A. G. (2022). Extensive species diversification and marked geographic phylogenetic structure in the Mesoamerican genus Stenopelmatus (Orthoptera: Stenopelmatidae: Stenopelmatinae) revealed by mitochondrial and nuclear 3RAD data. Invertebrate Systematics, 36, 1–21. https://doi.org/10.1071/IS21022

Hajibabaei, M., Singer, G. A., Hebert, P. D., & Hickey, D. A. (2007). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23, 167–172. https://doi.org/10.1016/j.tig.2007.02.001

Hebert, P. D., Ratnasingham, S., & De Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, S96–S99. https://doi.org/10.1098/rsbl.2003.0025

Jin, J. J., Yu, W. B., Yang, J. B., Song, Y., Yi, T. S., & Li, D. Z. (2018). GetOrganelle: a simple and fast pipeline for de novo assembly of a complete circular chloroplast genome using genome skimming data. Genome Biology, 21, 1–31. https://doi.org/10.1186/s13059-020-02154-5

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S. et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Lumley, L. M., & Sperling, F. A. (2010). Integrating morphology and mitochondrial DNA for species delimitation within the spruce budworm (Choristoneura fumiferana) cryptic species complex (Lepidoptera: Tortricidae). Systematic Entomology, 35, 416–428. https://doi.org/10.1111/j.1365-3113.2009.00514.x

Maddock, S. T., Briscoe, A. G., Wilkinson, M., Waeschenbach, A., San Mauro, D., Day, J. J. et al. (2016). Next-generation mitogenomics: a comparison of approaches applied to caecilian amphibian phylogeny. Plos One, 11, e0156757. https://doi.org/10.1371/journal.pone.0156757

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A. et al. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015

Molak, M., & Ho, S. Y. (2015). Prolonged decay of molecular rate estimates for metazoan mitochondrial DNA. PeerJ, 3, e821. https://doi.org/10.7717/peerj.821

Nee, S., May, R. M., & Harvey, P. H. (1994). The reconstructed evolutionary process. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 344, 305–311. https://doi.org/10.1098/rstb.1994.0068

Papadopoulou, A., Anastasiou, I., & Vogler, A. P. (2010). Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution, 27, 1659–1672. https://doi.org/10.1093/molbev/msq051

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sheffield, N. C., Hiatt, K. D., Valentine, M. C., Song, H., & Whiting, M. F. (2010). Mitochondrial genomics in Orthoptera using MOSAS. Mitochondrial DNA, 21, 87–104. https://doi.org/10.3109/19401736.2010.500812

Song, H., Amédégnato, C., Cigliano, M. M., Desutter-Gandcolas, L., Heads, S. W., Huang, Y. et al. (2015). 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics, 31, 621–651. https://doi.org/10.1111/cla.12116

Song, H., Moulton, M. J., & Whiting, M. F. (2014). Rampant nuclear insertion of mtDNA across diverse lineages within Orthoptera (Insecta). Plos One, 9, e110508. https://doi.org/10.1371/journal.pone.0110508

Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and other Methods). Version 4. Sinauer Associates, Sunderland, Mass.

Vandergast, A. G., Weissman, D. B., Wood, D. A., Rentz, D. C., Bazelet, C. S., & Ueshima, N. (2017). Tackling an intractable problem: Can greater taxon sampling help resolve relationships within the Stenopelmatoidea (Orthoptera: Ensifera)? Zootaxa, 4291, 1–33. https://doi.org/10.11646/zootaxa.4291.1.1

Weissman, D. B. (2001). North and Central American Jerusalem crickets (Orthoptera: Stenopelmatidae): taxonomy, distribution, life cycle, ecology and related biology of the American species. In H. Laurence (Ed.), The biology of wetas, king crickets and their allies (pp. 57–72). New York: CAB International. https://doi.org/10.1079/9780851994086.0057

Weissman, D. B. (2005). Jerusalem! cricket? (Orthoptera: Stenopelmatidae: Stenopelmatus); origins of a common name. American Entomology, 51, 138–139. https://doi.org/10.1093/ae/51.3.138

Weissman, D. B., Vandergast, A. G., Song, H., Shin, S., McKenna, D. D., & Ueshima, N. (2021). Generic relationships of New World Jerusalem crickets (Orthoptera: Stenopelmatoidea: Stenopelmatinae), including all known species of Stenopelmatus. Zootaxa, 4917, 1–122. https://doi.org/10.11646/zootaxa.4917.1.1

Descargas

Publicado

2023-02-15

Número

Sección

EVOLUCIÓN