Diversidad genética e historias poblacionales de dos especies de Phidippus (Araneae: Salticidae) del noroeste de México

Autores/as

  • Fadia Sara Ceccarelli CICESE https://orcid.org/0000-0003-4117-7366
  • Luz Abril Garduño-Villaseñor Centro de Investigación Científica y de Educación Superior de Ensenada
  • Luis Carlos Hernández-Salgado Centro de Investigación Científica y de Educación Superior de Ensenada

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.5052

Palabras clave:

Demografía, Pleistoceno, Baja California, Phidippus johnsoni, Phidippus phoenix

Resumen

Baja California es un área importante ecológicamente siendo la única zona del país con un ambiente mediterráneo y cuenta con una alta diversidad de especies y endemismos. Los estudios de biodiversidad y diversidad genética en esta región de México son escasos, sobre todo para grupos ecológicamente importantes como los artrópodos terrestres. Debido a la escasez de información, se utilizaron datos moleculares para obtener la diversidad genética y las historias poblacionales de las 2 especies de Phidippus (Araneae:Salticidae) más abundantes de la región. La especie más ampliamente distribuida es Phidippus johnsoni y se encontró que pertenece a una gran población panmíctica en Baja California, mientras que P. phoenix se divide en 2 poblaciones. Ambas especies presentaron una alta diversidad genética y grandes tamaños poblacionales, los cuales aumentaron durante los últimos 150,000 años para P. johnsoni y los últimos 30,000 años, después del último Máximo Glacial,  para P. phoneix. Este estudio refuerza la importancia de esta región, no solo por su diversidad de especies, sino también por la diversidad genética que se encuentra dentro de las poblaciones, la cual se ha acumulado desde el Pleistoceno, gracias a la relativa estabilidad ecológica de la zona durante ese periodo.

Citas

Bodner, M. R., & Maddison, W. P. (2012). The biogeography and age of salticid spider radiations (Araneae: Salticidae). Molecular Phylogenetics and Evolution, 65, 213–240. https://doi.org/10.1016/j.ympev.2012.06.005

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D. et al. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. Plos Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537

Burge, D. O., Thorne, J. H., Harrison, S. P., O’Brien, B. C., Rebman, J. P., Shevock, J. R. et al. (2016). Plant diversity and endemism in the California Floristic Province. Madroño, 63, 3-206. https://doi.org/10.3120/madr-63-02-3-206.1

Ceccarelli, F. S. (2008). Behavioral mimicry in Myrmarachne species (Araneae, Salticidae) from North Queensland, Australia. The Journal of Arachnology, 36, 344–351. https://doi.org/10.1636/CSt07-114.1

Clark, W. H., & Sankey, J. T. (1999). Late Holocene Sonoran Desert arthropod remains from a packrat midden, Catavina, Baja California Norte, Mexico. Pan Pacific Entomologist, 75, 183–199.

Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (2002). TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium, International Proceedings, 2, 184.

Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J. et al. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology, 46, 419–437. https://doi.org/10.1071/ZO98048

Crews, S. C., & Hedin, M. (2006). Studies of morphological and molecular phylogenetic divergence in spiders (Araneae: Homalonychus) from the American southwest, including divergence along the Baja California Peninsula. Molecular Phylogenetics and Evolution, 38, 470–487. https://doi.org/10.1016/j.ympev.2005.11.010

Due, A. D., & Polis, G. A. (1986). Trends in scorpion diversity along the Baja California peninsula. The American Naturalist, 128, 460–468.

Earl, D. A., & VonHoldt, B. M. (2012). Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7

Edwards, G. B. (2004). Revision of the jumping spiders of the genus Phidippus. Occasional Papers of the Florida State Collection of Arthropods, 11.

Edwards, G. B. (2020). Description of Phidippus pacosauritus sp. nov. (Salticidae: Salticinae: Dendryphantini: Dendryphantina) with a reanalysis of related species in the Mystaceus Group. Peckhamia, 221.1, 1–18.

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Goldberg, E. E., & Lande, R. (2007). Species’ borders and dispersal barriers. The American Naturalist, 170, 297–304. https://doi.org/10.1086/518946

González-Abraham, C. E., Garcillán, P. P., Ezcurra, E., & Trabajo de Ecorregiones, G. de T. de E. (2010). Ecorregiones de la península de Baja California: una síntesis. Botanical Sciences, 87, 69. https://doi.org/10.17129/botsci.302

González-Trujillo, R., Correa-Ramírez, M. M., Ruiz-Sanchez, E., Salinas, E. M., Jiménez, M. L., & García-De León, F. J. (2016). Pleistocene refugia and their effects on the phylogeography and genetic structure of the wolf spider Pardosa sierra (Araneae: Lycosidae) on the Baja California Peninsula. Journal of Arachnology, 44, 367–379. https://doi.org/10.1636/R15-84.1

Graham, M. R., Bryson, Jr., R. W., & Riddle, B. R. (2014). Late Pleistocene to Holocene distributional stasis in scorpions along the Baja California peninsula. Biological Journal of the Linnean Society, 111, 450–461. https://doi.org/10.1111/bij.12216

Hamilton, M. B. (2021). Population Genetics. Hoboken, New Jersey: John Wiley & Sons.

Heled, J. & Drummond, A. J. (2008). Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology, 8, 1–15. https://doi.org/10.1186/1471-2148-8-289

Hernández-Salgado, L. C., Guerrero-Fuentes, D. R., Garduño-Villaseñor, L. A., Castañeda-Betancur, L., López-Reyes, E., & Ceccarelli, F. S. (2022). New distributional records of Phidippus (Araneae: Salticidae) for Baja California and Mexico: an integrative approach. Diversity, 14, 159–172. https://doi.org/10.3390/d14030159

Hey, J., & Wakeley, J. (1997). A coalescent estimator of the population recombination rate. Genetics, 145, 833-46. https://doi.org/10.1093/genetics/145.3.833

Hill, D. E., & Richman, D. B. (2009). The evolution of jumping spiders (Araneae: Salticidae): a review. Peckhamia, 75, 1–7.

Hubisz, M., & Siepel, A. (2020). Inference of ancestral recombination graphs using ARGweaver. In J. Y. Dutheil (Ed), Statistical population genomics (pp. 231–266). New York: Humana. https://doi.org/10.1007/978-1-0716-0199-0_10

Hudson, R. R. (1987). Estimating the recombination parameter of a finite population model without selection. Genetics Research, 50, 245–250. https://doi.org/10.1017/S0016672300023776

Hudson, R. R., & Kaplan, N. L. (1985). Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics, 111, 147–164. https://doi.org/10.1093/genetics/111.1.147

Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics, 132, 583–589. https://doi.org/10.1093/genetics/132.2.583

Ignatieva, A., Lyngsø, R. B., Jenkins, P. A., & Hein, J. (2021). KwARG: Parsimonious reconstruction of ancestral recombination graphs with recurrent mutation. Bioinformatics, 37, 3277–3284. https://doi.org/10.1093/bioinformatics/btab351

Ingram, A. L., Deparis, O., Boulenguez, J., Kennaway, G., Berthier, S., & Parker, A. R. (2011). Structural origin of the green iridescence on the chelicerae of the red-backed jumping spider, Phidippus johnsoni (Salticidae: Araneae). Arthropod Structure & Development, 40, 21–25. https://doi.org/10.1016/j.asd.2010.07.006

Jackson, R. R. (1977a). Prey of the jumping spider Phidippus johnsoni (Araneae: Salticidae). Journal of Arachnology, 5, 145–149.

Jackson, R. R. (1977b). Courtship versatility in the jumping spider, Phidippus johnsoni (Araneae: Salticidae). Animal Behaviour, 25, 953–957.

Jackson, R. R. (1977c). An analysis of alternative mating tactics of the jumping spider Phidippus johnsoni (Araneae, Salticidae). Journal of Arachnology, 5, 185–230.

Jackson, R. R. (1978). Life history of Phidippus johnsoni (Araneae, Salticidae). Journal of Arachnology, 6, 1–29.

Jackson, R. R. (1979). Nests of Phidippus johnsoni (Araneae, Salticidae): characteristics, pattern of occupation, and function. Journal of Arachnology, 7, 47–58.

Jackson, R. R. (1980). The mating strategy of Phidippus johnsoni (Araneae, Salticidae): II. Sperm competition and the function of copulation. Journal of Arachnology, 8, 217–240.

Jackson, R. R. (1981). Relationship between reproductive security and intersexual selection in a jumping spider Phidippus johnsoni (Araneae: Salticidae). Evolution, 35, 601–604.

Jackson, R. R. (1986). Use of pheromones by males of Phidippus johnsoni (Araneae, Salticidae) to detect subadult females that are about to molt. The Journal of Arachnology, 14, 137–139.

Jackson, R. R., & Pollard, S. D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287–308. https://doi.org/10.1146/annurev.en.41.010196.001443

Jiménez, M. L., Palacios-Cardiel, C., Maya-Morales, J., Berrian, J. E., & Ibarra-Núñez, G. (2018). Nuevos registros de arañas (Arachnida: Araneae) para la Región Del Cabo, península de Baja California, México. Acta Zoológica Mexicana, 34, 1–13. https://doi.org/10.21829/azm.2018.3412159

Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160–1166. https://doi.org/10.1093/bib/bbx108

Leffler, E. M., Bullaughey, K., Matute, D. R., Meyer, W. K., Segurel, L. & Venkat, A. (2012). Revisiting an old riddle: what determines genetic diversity levels within species? Plos Biology, 10, e1001388. https://doi.org/10.1371/journal.pbio.1001388

Leigh, J. W., & Bryant, D. (2015). PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410

Levy, E., Byrne, M., Coates, D. J., Macdonald, B. M., McArthur, S., & van Leeuwen, S. (2016). Contrasting influences of geographic range and distribution of populations on patterns of genetic diversity in two sympatric Pilbara Acacias. Plos One, 11, e0163995. https://doi.org/10.1371/journal.pone.0163995

Lim, M. L., & Li, D. (2006). Behavioural evidence of UV sensitivity in jumping spiders (Araneae: Salticidae). Journal of Comparative Physiology A, 192, 871-878. https://doi.org/10.1007/s00359-006-0126-5

Lozier, J. D., Strange, J. P., Stewart, I. J., & Cameron, S. A. (2011). Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Molecular Ecology, 20, 4870–4888

https://doi.org/10.1111/j.1365-294X.2011.05314.x

Maddison, W. P., Evans, S. C., Hamilton, C. A., Bond, J. E., Lemmon, A. R., & Lemmon, E. M. (2017). A genome-wide phylogeny of jumping spiders (Araneae, Salticidae), using anchored hybrid enrichment. Zookeys, 695, 89. https://doi.org/10.3897/zookeys.695.13852

Maldonado-Carrizales, J., & Ponce-Saavedra, J. (2017). Arañas Saltarinas (Araneae: Salticidae) en dos sitios contrastantes en grado de antropización en Morelia Michoacán, México. Entomología Mexicana, 4, 597–603.

Maya-Morales, J., Jiménez, M. L., & Morrone, J. J. (2018). Track analysis of the funnel-web spiders (Araneae: Agelenidae) of Mexico. Revista Mexicana de Biodiversidad, 89, 530–540. https://doi.org/10.22201/ib.20078706e.2018.2.2367

Meirmans, P. G. (2015). Seven common mistakes in population genetics and how to avoid them. Molecular Ecology, 24, 3223–3231. https://doi.org/10.1111/mec.13243

Meyer, C. F., Kalko, E. K., & Kerth, G. (2009). Small‐scale fragmentation effects on local genetic diversity in two Phyllostomid bats with different dispersal abilities in Panama. Biotropica, 41, 95–102.

https://doi.org/10.1111/j.1744-7429.2008.00443.x

Morrone, J. J., & Márquez, J. (2008). Biodiversity of Mexican terrestrial arthropods (Arachnida and Hexapoda): a biogeographical puzzle. Acta Zoológica Mexicana, 24, 15–41.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. https://doi.org/10.1038/35002501

Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

Penney, D. (2010). The evolution of jumping spiders (Araneae: Salticidae): the palaeontological evidence. Peckhamia, 81, 1–3.

Pritchard, J., K., Stephens, M., Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

https://doi.org/10.1093/genetics/155.2.945

R core team (2022). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032

Riddle, B. R., Hafner, D. J., Alexander, L. F., & Jaeger, J. R. (2000). Cryptic vicariance in the historical assembly of a Baja California Peninsular desert biota. Proceedings of the National Academy of Sciences, 97, 14438–14443. https://doi.org/10.1073/pnas.250413397

Riemann, H., & Exequiel, E. (2007). Endemic regions of the vascular flora of the peninsula of Baja California, Mexico. Journal of Vegetation Science, 18, 327–336. https://doi.org/10.1111/j.1654-1103.2007.tb02544.x

Roderick, G. K., Croucher, P. J., Vandergast, A. G., & Gillespie, R. G. (2012). Species differentiation on a dynamic landscape: shifts in metapopulation genetic structure using the chronology of the Hawaiian archipelago. Evolutionary Biology, 39, 192–206. https://doi.org/10.1007/s11692-012-9184-5

Rozas, J., Ferrer-Mata, A., Sánchez-del Barrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E. et al. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299–3302. https://doi.org/10.1093/molbev/msx248

Rubio, G. D., Stolar, C. E., Ohashi, D. V., & Baigorria, J. E. (2019). Jumping spiders (Araneae: Salticidae) in agroecosystems: a case study to know how friendly some crops can be for native fauna. Studies on Neotropical Fauna and Environment, 54, 133–148. https://doi.org/10.1080/01650521.2019.1629174

Sarukhan, J. (Ed.). (2008). Capital natural de México. Ciudad de México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio).

Stephens, M., & Donnelly, P. A. (2003). A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetics, 73, 1162–1169. https://doi.org/10.1086/379378

Vellend, M., & Geber, M. A. (2005). Connections between species diversity and genetic diversity. Ecology Letters, 8, 767–781.

https://doi.org/10.1111/j.1461-0248.2005.00775.x

Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7, 256–276. https://doi.org/10.1016/0040-5809(75)90020-9

Wiggins, I. L. (1980). Flora of Baja California. Redwood, CA: Stanford University Press.

Wiken, E., Jiménez-Nava, F., & Griffith, G. (2011). North American Terrestrial Ecoregions —Level III. Montreal, Canada: Commission for Environmental Cooperation.

World Spider Catalog (2022). World Spider Catalog. Version 23.0. Natural History Museum Bern. Retrieved on June 01, 2022 from: http://wsc.nmbe.ch

Descargas

Archivos adicionales

Publicado

2023-02-15

Número

Sección

ECOLOGÍA