Diversidad microbiana cultivable del suelo en un bosque mesófilo de montaña prístino en Oaxaca, México

Autores/as

  • Cinthya Leocadio Universidad Nacional Autónoma de México
  • Nohely Álvarez-López Universidad Nacional Autónoma de México
  • Alejandra Barrios Universidad Nacional Autónoma de México
  • Abraham Guerra Universidad Simón Bolívar
  • Yunuen Tapia-Torres Universidad Nacional Autónoma de México
  • Patricia Velez Universidad Nacional Autónoma de México https://orcid.org/0000-0002-4449-8977

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.4980

Palabras clave:

Diversidad edáfica microbiana, Estequiometría C:N:P, Heterogeneidad espacial, Hongo fitopatógeno

Resumen

El bosque mesófilo de montaña se encuentra entre los ecosistemas más amenazados a escala mundial. Actualmente, enfrenta diversos disturbios de origen antrópico, tales como la deforestación y el cambio climático, que comprometen su sostenibilidad funcional. A pesar de que las comunidades microbianas fungen como reguladoras de los ciclos de nutrientes en el suelo, su diversidad permanece desconocida en gran medida para el bosque mesófilo. En el presente estudio evaluamos la diversidad y la estructura de comunidades bacterianas y fúngicas asociadas con el suelo circundante a especies vegetales icónicas (Cyatheaceae y Juglandaceae) en una localidad prístina de bosque mesófilo de montaña en México, y exploramos patrones ecológicos a una escala geográfica fina vinculados con variables biogeoquímicas edáficas. Nuestros resultados revelaron una alta prevalencia de especies de hongos entomopatógenos
como Tolypocladium geodes y de bacterias potencialmente solubilizadoras de fosfato como Pseudomonas y Bacillus spp. Observamos una fuerte asociación entre la composición de las comunidades fúngicas y bacterianas con variables ambientales clave, tales como la disponibilidad de C:N:P en el suelo. Estos resultados deben ser considerados para el desarrollo y aplicación de estrategias de conservación in situ con el objetivo de preservar las funciones microbianas.

Biografía del autor/a

Patricia Velez, Universidad Nacional Autónoma de México

Investigadora Asociada C de TC del área de Micología, Departamento de Botánica, Instituto de Biología, UNAM

Citas

Abarenkov, K., Henrik, R., Larsson, K., Alexander, I. J., Eberhardt, U., Erland, S. et al. (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist, 186, 281–285. https://doi.org/10.1111/j.1469-8137.2009.03160.x

Afshari, N., & Hemmati, R. (2017). First report of the occurrence and pathogenicity of Clonostachys rosea on faba bean. Australasian Plant Pathology, 46, 231–234. https://doi.org/10.1007/s13313-017-0482-3

Alfaro-Sánchez, G. (2004). Suelos. In A. J. García-Mendoza, M. J. Ordóñez, & M. Briones-Salas (Eds.), Biodiversidad de Oaxaca (pp. 55–65). México D.F.: Instituto de Biología, UNAM/ Fondo Oaxaqueño para la Conservación de la Naturaleza/ World Wildlife Fund.

Alfonso-Corrado, C., Naranjo-Luna, F., Clark-Tapia, R., Campos, J. E., Rojas-Soto, O. R., Luna-Krauletz, M. D. et al. (2017). Effects of environmental changes on the occurrence of Oreomunnea mexicana (Juglandaceae) in a biodiversity hotspot cloud forest. Forests, 8, 1–15. https://doi.org/10.3390/f8080261

Arias, R. M., & Heredia-Abarca, G. (2014). Fungal diversity in coffee plantation systems and in a tropical montane cloud forest in Veracruz, Mexico. Agroforestry Systems, 88, 921–933. https://doi.org/10.33885/sf.2020.50.1290

Arias, R. M., & Heredia-Abarca, G. (2020). Diversity of soil culturable fungi in the tropical montane cloud forest of Veracruz, Mexico. Scientia Fungorum, 50, e1290. https://doi.org/10.33885/sf.2020.50.1290

Bąk, T. (2014). Triangular method of spatial sampling. Statistics in Transition, 15, 9–22.

Bazzaz, F. A. (1998). Tropical forests in a future climate: changes in biological diversity and impact on the global carbon cycle. In A. Markham (Ed.), Potential impacts of climate change on tropical forest ecosystems (pp. 177–196). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-2730-3_7

Behie, S. W., Zelisko, P. M., & Bidochka, M. J. (2012). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science, 336, 1576–1577. https://doi.org/10.1126/science.1222289

Bienapfl, J. C., Floyd, C. M., Percich, J. A., & Malvick, D. K. (2012). First report of Clonostachys rosea causing root rot of soybean in the United States. Plant Disease, 96, 1700–1700. https://doi.org/10.1094/PDIS-06-12-0550-PDN

Booth, G. D., Niccolucci, M. J., & Schuster, E. G. (1994). Identifying proxy sets in multiple linear regression: an aid to better coefficient interpretation. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station.

Brown, N. A., Bass, C., Baldwin, T. K., Chen, H., Massot, F., Carion, P. W. C. et al. (2011). Characterisation of the Fusarium graminearum -wheat floral interaction. Journal of Pathogens, 2011, 626345. https://doi.org/10.4061/2011/626345

Bruijnzeel, L. A., Kappelle, M., Mulligan, M., & Scatena, F. N. (2010). Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. In L. A. Bruijnzeel, F. N. Scatena, & L. S. Hamilton (Eds.), Tropical montane cloud forest: science for conservation and management (pp. 691–740). New York: Cambridge University Press.

Bruijnzeel, L. A., Mulligan, M., & Scatena, F. N. (2011). Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes, 25, 465–498. https://doi.org/10.1002/hyp.7974

Bubb, P., May, I., Miles, L., & Sayer, J. (2004). Cloud forest agenda. Cambridge, UK: UNEP-WCMC.

Corrales, A., Xu, H., Garibay-Orijel, R., Alfonso-Corrado, C., Williams-Linera, G., Chu, C. et al. (2021). Fungal communities associated with roots of two closely related Juglandaceae species with a disjunct distribution in the tropics. Fungal Ecology, 50, 101023. https://doi.org/10.1016/j.funeco.2020.101023

de Boer, W. D., Folman, L. B., Summerbell, R. C., & Boddy L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 29, 795–811. https://doi.org/10.1016/j.femsre.2004.11.005

De Long, J. R., Jackson, B. G., Wilkinson, A., Pritchard, W. J., Oakley, S., Mason, K. E. et al. (2019). Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. Journal of Ecology, 107, 1704–1719. https://10.1111/1365-2745.13160

del Mar Delgado-Serrano, M., Escalante, R., & Basurto, S. (2015). Is the community-based management of natural resources inherently linked to resilience? An analysis of the Santiago Comaltepec community (Mexico). Ager. Revista de Estudios sobre Despoblación y Desarrollo Rural, 18, 91–114. https://doi.org/10.4422/ager.2015.07

Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

Dray, S., & Dufour, A. B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1–20. https://doi.org/10.18637/jss.v022.i04

Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8, 186–194. https://doi.org/10.1101/gr.8.3.186

Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Research, 8, 175–185. https://doi.org/10.1101/gr.8.3.175

Faust, K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews Microbiology, 10, 538–550. https://doi.org/10.1038/nrmicro2832

Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55, 73–106. https://doi.org/10.1016/s0012-8252(01)00056-3

Gordon, D., Desmarais, C., & Green, P. (2001). Automated Finishing with Autofinish. Genome Research, 11, 614–625. https://doi.org/10.1101/gr.171401

Guu, J. R., Ju, Y. M., & Hsieh, H. J. (2010). Bionectriaceous fungi collected from forest in Taiwan. Botanical Studies, 51, 61–74.

Hamilton, L. S. (2009). Los bosques y el agua. Estudio temático elaborado en el ámbito de la evaluación de los recursos forestales mundiales 2005. Italia, Roma: FAO.

Heredia-Abarca, G., Arias, R. M., & Gómez, S. (2011). Hongos microscópicos: especies en restos vegetales y del suelo. In A. Cruz-Angón (Ed.), La biodiversidad en Veracruz estudio de estado. Volumen II (pp. 41–49). México D.F.: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad/ Universidad Veracruzana/ Instituto de Ecología, A.C.

Horwath, W. R. (2017). The role of the soil microbial biomass in cycling nutrients. In K. R. Tate (Ed.), Microbial biomass. A paradigm shift in terrestrial biogeochemistry (pp. 41–66). London: World Scientific.

Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H. et al. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology, 148, 2097–2109. https://doi.org/10.1099/00221287-148-7-2097

INEGI, Instituto Nacional de Estadística y Geografía. (2010). Compendio de información geográfica municipal. Santiago Comaltepec, Oaxaca. México D.F.: Instituto Nacional de Estadística y Geografía.

Jirout, J. (2015). Nitrous oxide productivity of soil fungi along a gradient of cattle impact. Fungal Ecology, 17, 155–163. https://doi.org/10.1016/j.funeco.2015.07.003

Karger, D. N., Kessler, M., Lehnert, M., & Jetz, W. (2021). Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nature Ecology & Evolution, 5, 854–862. https://doi.org/10.1038/s41559-021-01450-y

Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M. et al. (2013). Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22, 5271–5277. https://doi.org/10.1111/mec.12481

Kõljalg, U., Nilsson, H. R., Schigel, D., Tedersoo, L., Larsson, K. H., May, T. W. et al. (2020). The taxon hypothesis paradigm-on the unambiguous detection and communication of taxa. Microorganisms, 8, 1910. https://doi.org/10.3390/microorganisms8121910

Krasilnikov, P., Gutiérrez, M. C., Ahrens, R. J., Cruz, C. O., Sedov, S., & Solleiro, E. (2013). The soils of Mexico. Dordrecht: Springer.

Lane, D. J. (1991). 16S/23S rRNA Sequencing. In E. Stackebrandt, & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematic (pp.115–175). New York: John Wiley and Sons.

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R Package for Multivariate Analysis. Journal of Statistical Software, 25, 1–18. https://doi.org/10.18637/jss.v025.i01

Lee, S. A., Kang, M. J., Kim, T. D., & Park, E. J. (2020). First Report of Clonostachys rosea Causing Root Rot of Gastrodia elata in Korea. Plant Disease, 104, 3069–3069. https://doi.org/10.1094/PDIS-01-20-0148-PDN

Leija-Loredo, E. G., & Pavón, N. P. (2017). The northernmost tropical rain forest of the Americas: Endangered by agriculture expansion. Tropical Ecology, 58, 641–652.

Marin-Felix, Y., Hernández-Restrepo, M., Wingfield, M. J., Akulov, A., Carnegie, A. J., Cheewangkoon, R. et al. (2019). Genera of phytopathogenic fungi: GOPHY 2. Studies in Mycology, 92, 47–133. https://doi.org/10.1016/j.simyco.2018.04.002

Martínez, M. L., Pérez-Maqueo, O., Vázquez, G., Castillo-Campos, G., García-Franco, J., Mehltreter, K. et al. (2009). Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forest of Mexico. Forest Ecology and Management, 258, 1856–1863. https://doi.org/10.1016/j.foreco.2009.02.023

McGuire, K. L., & Treseder, K. K. (2010). Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biology and Biochemistry, 42, 529–535. https://doi.org/10.1016/j.soilbio.2009.11.016

Miller, M., Palojärvi, A., Rangger, A., Reeslev, M., & Kjøller, A. (1998). The use of fluorogenic substrates to measure fungal presence and activity in soil. Applied and Environmental Microbiology, 64, 613–617. https://doi.org/10.1128/aem.64.2.613-617.1998

Mori, A. S., Isbell, F., & Seidl, R. (2018). β-Diversity, community assembly and ecosystem functioning. Trends in Ecology and Evolution, 33, 549–564. https://doi.org/10.1016/j.tree.2018.04.012

Nemergut, D. R., Schmidt, S. K., Fukami, T., O´ Neill, S. P, Bilinski, T. M., Stanish, L. F. et al. (2013). Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews, 77, 342–356. https://doi.org/10.1128/MMBR.00051-12

Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J. et al. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006

Nielsen, U. N., Osler, G. H., Cambell, C. D., Neilson, R., Burslem, D. F., & Van der Wal, R. (2010). The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. Plos One, 5, e11567. https://doi.org/10.1371/journal.pone.0011567

Nilsson, R. H., Larsson, K. H., Taylor, A. F. S., Bengtsson, J., Jeppesen, T. S., Schigel, D. et al. (2019). The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47, 259–264. https://doi.org/10.1093/nar/gky1022

Ochoa-Ochoa, L. M., Mejía-Domínguez, N. R., & Bezaury-Creel, J. (2017). Priorización para la conservación de los Bosques de Niebla en México. Ecosistemas, 26, 27–37. https://doi.org/10.7818/ECOS.2017.26-2.04

Oda, G. A. M., de Siqueira, M. F., Pires, A. D. S., & de Cássia Quitete-Portela, R. (2019). Micro- or macroscale? Which one best predicts the establishment of an endemic Atlantic Forest palm? Ecology and Evolution, 9, 7284–7290. https://doi.org/10.1002/ece3.5300

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson, G. L., Solymos, P. et al. (2009). vegan: Community Ecology Package, R package version 1.15-3. Retrieved from: http://cran-r-project.org/package=vegan

Ozimek, E., & Hanaka, A. (2021). Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture, 11, 7. https://doi.org/10.3390/agriculture11010007

Parham, J. A., & Deng, S. P. (2000). Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biology and Biochemistry, 32, 1183–1190. https://doi.org/10.1016/S0038-0717(00)00034-1

Pascual-Mendoza, S., Clark-Tapia, R., Campos, J. E., Monsalvo-Reyes, A., Luna-Krauletz, M. D., Pacheco-Cruz, N. et al. (2020). Diversidad genética de Oreomunnea mexicana (Juglandaceae), relicta del bosque de niebla de Sierra Juárez, Oaxaca. México. Madera y Bosques, 26, e2621941. https://doi.org/10.21829/myb.2020.2621941

Peršoh, D., Melcher, M., Flessa, F., & Rambold, G. (2010). First fungal community analyses of endophytic ascomycetes associated with Viscum album ssp. austriacum and its host Pinus sylvestris. Fungal Biology, 114, 585–596. https://doi.org/10.1016/j.funbio.2010.04.009

Ponce-Reyes, R., Reynoso-Rosales, V. H., Watson, J. E. M., VanDer Wal, J., Fuller, R. A., Pressey, R. L. et al. (2012). Vulnerability of cloud forest reserves in Mexico to climate change. Nature Climate Change, 2, 448–452. https://doi.org/10.1038/nclimate1453

R Core Team (2018) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna. https://www.R-project.org.

Reverchon, F., García, W., Guevara, E., Solís, I. A., Ferrera, O., & Lorea, F. (2019). Antifungal potential of Lauraceae rhizobacteria from a tropical montane cloud forest against Fusarium spp. Brazilian Journal of Microbiology, 50, 583–592. https://doi.org/10.1007/s42770-019-00094-2

Reverchon, F., Escudero-Osorio, Y. S., Morteo-Zavaleta, J., Guevara-Avendaño, E., & Ramírez-Vázquez, M. (2020). Inhibición de Fusarium solani por bacterias de la filósfera y rizósfera de árboles del bosque mesófilo de montaña. Biotecnología y Sustentabilidad, 5, 3–18. https://doi.org/10.57737/biotecnologiaysust.v5i1.738

Rinnan, R., & Bååth, E. (2009). Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environmental Microbiology, 75, 3611–3620. https://doi.org/10.1128/AEM.02865-08

Romaní, A. M., Fischer, H., Mille-Lindblom, C., & Tranvil, L. J. (2006). Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology, 87, 2559–2569. https://doi.org/10.1890/0012-9658(2006)87[2559:IOBAFO]2.0.CO;2

Rosas-Rangel, D. M., Mendoza, M. E., Gómez-Tagle, A., & Tobón-Marín, C. (2019). Advances and challenges in the knowledge on the tropical mountain cloud forests of Mexico. Madera Bosques, 25, e2511759. https://doi.org/10.21829/myb.2019.2511759

Rzedowski, J. (1996). Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botanica Mexicana, 35, 25–44. https://doi.org/10.21829/abm35.1996.955

Rzedowski, J., & Palacios-Chávez, R. (1977). The Mexican Engelhardtia (Oreomunnea) forest in the region of La Chinantla (Oaxaca, Mexico). A relic of the Cenozoic. Botanical Sciences, 36, 93–127. https://doi.org/10.17129/botsci.1161

Santillán, A., Cruz, S. Z., Calva, A., Ireta, A. D. R., & Bautista, J. (2020). Climatic water balance of mountain mesophilic forest in the huasteca. Ecosistemas y Recursos Agropecuarios, 7, e2016. https://doi.org/10.19136/era.a7n1.2016

Schulz, S., Brankatschk, R., Dümig, A., Kögel-Knabner, I., Schloter, M., & Zeyer, J. (2013). The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences, 10, 3983–3996. https://doi.org/10.5194/bg-10-3983-2013

Sinsabaugh, R. L., & Findlay, S. (1995). Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microbial Ecology, 30, 127–141. https://doi.org/10.1007/BF00172569

Tapia-Torres, Y., & García-Oliva, F. (2013). La disponibilidad del fósforo es producto de la actividad bacteriana en el suelo en ecosistemas oligotróficos: una revisión crítica. Terra Latinoamericana, 31, 231–242.

Trejo, I. (2004). Clima. In A. J. García Mendoza, M. J. Ordónez, & M. Briones-Salas (Eds.), Biodiversidad de Oaxaca (pp. 67–85). México D.F.: Instituto de Biología, UNAM/ Fondo oaxaqueño para la conservación de la naturaleza/ World Wildlife Fund.

Vélez, P., Tapia-Torres, Y., García-Oliva, F., & Gasca-Pineda, J. (2021). Small-scale variation in a pristine montane cloud forest: evidence on high soil fungal diversity and biogeochemical heterogeneity. PeerJ, 9, e11956. https://doi.org/10.7717/peerj.11956

Wagg, C., Dudenhöffer, J. H., Widmer, F., & Van Der Heijden, M. G. (2018). Linking diversity, synchrony and stability in soil microbial communities. Functional Ecology, 32, 1280–1292. https://doi.org/10.1111/1365-2435.13056

Warcup, J. H. (1960). Methods for isolation and estimation of activity of fungi in soil. In D. Parkinson, & J. Waid (Eds.), Ecology of soil Fungi (pp. 3–21). Liverpool: Liverpool University Press.

White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). New York: Academic Press.

Williams, G., Toledo, M., & Hernández, C. G. (2013). How heterogeneous are the cloud forest communities in the mountains of central Veracruz, Mexico? Plant Ecology, 214, 685–701. https://doi.org/10.1007/s11258-013-0199-5

Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D., & Tilman, D. (2003). Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology, 84, 2042–2050. https://doi.org/10.1890/02-0433

Zanne, A. E., Abarenkov, K., Afkhami, M. E., Aguilar-Trigueros, C. A., Bates, S., Bhatnagar, J. M. et al. (2020). Fungal functional ecology: bringing a trait‐based approach to plant-associated fungi. Biological Reviews, 95, 409–433. https://doi.org/10.1111/brv.12570

Zarza, E., López-Pastrana, A., Damon, A., Guillén-Navarro, K., & García-Fajardo, L. V. (2022). Fungal diversity in shade-coffee plantations in Soconusco, Mexico. PeerJ, 10, e13610. https://doi.org/10.7717/peerj.13610

Zimmermann, G. (1993). The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pesticide Science, 37, 375–379. https://doi.org/10.1002/ps.2780370410

Descargas

Archivos adicionales

Publicado

2023-05-24

Número

Sección

ECOLOGÍA