Hymenolepis ackerti n. sp. (Eucestoda: Hymenolepididae) de roedores cricétidos recolectados en las planicies centrales de Norteamérica

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.4927

Palabras clave:

Pradera Konza, Pradera pastizales altos, Identificación esperada, Inespecificidad hospedatoria

Resumen

Se presenta la caracterización de Hymenolepis ackerti esp. n., parásito de roedores de las praderas centrales norteamericanas. Este céstodo infecta 3 especies simpátricas de roedores Sigmodon hispidus (Sigmodontinae), Neotoma floridana (Neotominae) y Microtus ochrogaster (Arvicolinae). La comparación directa con las 10 especies congenéricas presentes en Norteamérica revela diferencias en el tamaño del escólex, la longitud de la cápsula rostelar, el arreglo testicular y el tamaño del saco del cirro, receptáculo seminal y huevos. La comparación de haplotipos mitocondriales y la similitud de los caracteres morfológicos indican la conespecificidad de céstodos que infectan roedores de estas 3 especies simpátricas. La posición de la especie dentro de Hymenolepis es aún incierta, ya que se carece de secuencias disponibles para la mayoría de las especies del género que posibiliten su reconstrucción filogenética. Dada la ubiquidad de roedores y sus parásitos, recomendamos que científicos practicantes generen un acervo de céstodos presentes en roedores tanto en Norteamérica como del mundo. En el presente trabajo, proponemos un método para muestrear ADN que permite la posfijación de los parásitos, misma que favorece su tinción o incluso su almacenamiento permanente en un medio fluido.

Biografía del autor/a

F. Agustín Jiménez, Southern Illinois University Carbondale

Associate Profesor

Direcor Graduate Studies

Department of Zoology

Citas

Briggs, J. M., Knapp, A. K., Blair, J. M., Heisler, J. L., Hoch, G. A., Lett, M. S. et al. (2005). An ecosystem in transition. Causes and consequences of the conversion of mesic grassland to shrubland. Bioscience, 55, 243–254.

Bruckerhoff, L., Connell, K., Guinnip, J., Adhikari, E., Godar, A., Gido, K. et al. (2021). Harmony on the prairie? Grassland plant and animal community responses to variation in climate across land-use gradients. Ecology, 102, e02986. https://doi.org/10.1002/ecy.2986

Coggins, J. R., & McDaniel, J. S. (1975). Helminth population dynamics in the cotton rat, Sigmodon hispidus. Proceedings of the Oklahoma Academy of Science, 55, 112–118.

Colella, J. P., Bates, J., Burneo, S. F., Camacho, M. A., Bonilla, C. C., Constable et al. (2021). Leveraging natural history biorepositories as a global, decentralized, pathogen surveillance network. Plos Pathogens, 17, e1009583. https://doi.org/10.1371/journal.ppat.1009583

Dunnum, J. L., Yanagihara, R., Johnson, K. M., Armien, B., Batsaikhan, N., Morgan, L. et al. (2017). Biospecimen Repositories and Integrated Databases as Critical Infrastructure for Pathogen Discovery and Pathobiology Research. Plos Neglected Tropical Diseases, 11, e0005133. https://doi.org/10.1371/journal.pntd.0005133

Faulkner, B. C., & Lochmiller, R. L. (2000). Ecotoxicity revealed in parasite communities of Sigmodon hispidus in terrestrial environments contaminated with petrochemicals. Environmental Pollution, 110, 135–145.

https://doi.org/10.1016/S0269-7491(99)00276-6

Galbreath, K. E., Hoberg, E. P., Cook J. A., Armién, B., Bell, K. C., Campbell, M. L. et al. (2019). Building an integrated infrastructure for exploring biodiversity: field collections and archives of mammals and parasites. Journal of Mammalogy, 100, 382–393. https://doi.org/10.1093/jmammal/gyz048

Gardner, S. L. (1985). Helminth parasites of Thomomys bulbivorus (Richardson) (Rodentia: Geomyidae), with the description of a new species of Hymenolepis (Cestoda). Canadian Journal of Zoology, 63, 1463–1469.

Gardner, S. L., & Campbell, M. L. (1992). Parasites as probes for biodiversity. Journal of Parasitology, 78, 596–600.

Gardner, S. L., Dursahinhan, A. T., Campbell, M. L., & Racz, S. E. (2020). A new genus and two new species of unarmed hymenolepidid cestodes (Cestoda: Hymenolepidiciae) from geomyid rodents in Mexico and Costa Rica. Zootaxa, 4766, 358–376. https://doi.org/10.11646/zootaxa.4766.2.5

Gardner, S. L., Luedders, B. A., & Duszynski, D. W. (2014). Hymenolepis robertrauschi n. sp. from grasshopper mice Onychomys spp. in New Mexico and Nebraska, U.S.A. Occassional Papers of the Texas Tech University Museum, 322, 1–10.

Harkema, R. (1946). The Metazoa parasitic in cotton rats of Wake County. Journal of the Elisha Mitchell Scientific Society, 62, 142–143.

Harkema, R., & Kartman, L. (1948). Observations on the helminths and ectoparasites of the cotton rat, Sigmodon hispidus Say and Ord, in Georgia and North Carolina. Journal of the Elisha Mitchell Scientific Society, 64, 183–191.

Haukisalmi, V., Hardman, L. M., Foronda, P., Feliu, C., & Henttonen, H. (2010). Systematic relationships of Mosgovoyia Spasskii, 1951 (Cestoda: Anoplocephalidae) and related genera inferred from mitochondrial and nuclear sequence data. Systematic Parasitology, 77, 71–79.

Hoberg, E. P., Makarikov, A. A., Tkach, V. V., Meagher, S., Nims, T. N., Eckerlin, R. P. et al. (2016). Insights on the host associations and geographic distribution of Hymenolepis folkertsi (Cestoda: Hymenolepididae) among rodents across temperate latitudes of North America. Parasitology Research, 115, 4627–4638.

Hoberg, E. P., & Soudachanh, K. M. (2021). Diversity of Tetrabothriidae (Eucestoda) among Holarctic Alcidae (Charadriiformes): Resolution of the Tetrabothrius jagerskioeldi cryptic species complex —cestodes of Alcinae— provides insights on the dynamic nature of tapeworm and marine bird faunas under the Stockholm Paradigm. MANTER. Journal of Parasite Biodiversity, 16, 1–76. https://doi.org/10.32873/unl.dc.manter16

Hope, A. G. (2019). Small mammal host-parasite sampling data for 16 linear trapping transects located in 8 LTER burn treatment watersheds at Konza Prairie version 3. Environmental Data Initiative. https://doi.org/10.6073/pasta/69109c56fcf21a30a8d37369cb47f8de

Makarikov, A. A., Galbreath, K. E., Eckerlin, R. P., & Hoberg, E. (2020). Discovery of Arostrilepis tapeworms (Cyclophyllidea: Hymenolepididae) and new insights for parasite species diversity from Eastern North America. Parasitology Research,119, 567–585 https://doi.org/https://doi.org/10.1007/s00436-019-06584-4

Makarikov, A. A., Nims, T. N., Galbreath, K. E., & Hoberg, E. P. (2015). Hymenolepis folkertsi n. sp (Eucestoda: Hymenolepididae) in the oldfield mouse Peromyscus polionotus (Wagner) (Rodentia: Cricetidae: Neotominae) from the southeastern Nearctic with comments on tapeworm faunal diversity among deer mice. Parasitology Research, 114, 2107–2117. https://doi.org/10.1007/s00436-015-4399-x

Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. New Orleans: Gateway Computing Environments Workshop (GCE). https://doi.org/10.1109/GCE.2010.5676129

Mollhagan, T. (1978). Habitat influence on helminth parasitism of the cotton rat in western Texas with remarks on some of the parasites [Article]. Southwestern Naturalist, 23, 401–408. https://doi.org/10.2307/3670248

Morgan, J. A. T., & Blair, D. (1998). Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda). Parasitology, 116, 289–297.

Nkouawa, A., Haukisalmi, V., Li, T. Y., Nakao, M., Lavikainen, A., Chen, X. W. et al. (2016). Cryptic diversity in hymenolepidid tapeworms infecting humans. Parasitology International, 65, 83–86. https://doi.org/10.1016/j.parint.2015.10.009

Panti-May, J. A., Rodríguez-Vivas, R. I., García-Prieto, L., Servian, A., & Costa, F. (2020). Worldwide overview of human infections with Hymenolepis diminuta. Parasitology Research, 119, 1997–2004. https://doi.org/10.1007/s00436-020-06663-x

Pfaffenberger, G. S., Kemether, K., & Debruin, D. (1985). Helminths of sympatric populations of kangaroo rats (Dipodomys ordii) and grasshopper mice (Onychomys leucogaster) from the high plains of eastern New Mexico. Journal of Parasitology, 71, 592–595. https://doi.org/10.2307/3281429

Rambaut, A. (2012). FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. Edinburgh: University of Edinburgh, Institute of Evolutionary Biology.

Ratajczak, Z., Briggs, J. M., Goodin, D. G., Luo, L., Mohler, R. L., Nippert, J. B. et al. (2016). Assessing the potential for transitions from Tallgrass Prairie to Woodlands: are we operating beyond critical fire thresholds? Rangeland Ecology & Management, 69, 280–287. https://doi.org/10.1016/j.rama.2016.03.004

Riley, W. A., & Shannon, W. R. (1922). The rat tapeworm, Hymenolepis diminuta, in man. The Journal of Parasitology, 8, 109–117. https://doi.org/10.2307/3270923

Sasaki, M., Anders, J. L., & Nakao, M. (2021). Cestode fauna of murid and cricetid rodents in Hokkaido, Japan, with assignment of DNA barcodes. Species Diversity, 26, 255–272. https://doi.org/10.12782/specdiv.26.255

Seidenberg, A. J., Kelly, P. C., Lubin, E. R., & Buffington, J. D. (1974). Helminths of cotton rat in southern Virginia, with comments on sex-ratios of parasitic nematode populations [Article]. American Midland Naturalist, 92, 320–326. https://doi.org/10.2307/2424297

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W. et al. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.

Smith, C. S., Jones, F. E., & Eyles, D. E. (1953). Three additional Tennessee cases of Hymenolepis diminuta infection in man. Journal of the Tennessee Academy of Science, 28, 196–197.

Descargas

Publicado

2023-03-31

Número

Sección

TAXONOMÍA Y SISTEMÁTICA