Caracterización de las comunidades de amebas testadas de dos lagos tropicales de alta montaña en el centro de México durante los últimos ~60 años

Autores/as

  • Margarita Caballero Universidad Nacional Autónoma de México
  • Itzel Sigala Universidad Nacional Autónoma de México https://orcid.org/0000-0003-3530-199X
  • Joanna Moreno Universidad Nacional Autónoma de México
  • Mireya Vega-Flores Universidad Nacional Autónoma de México
  • Luis A. Oseguera Universidad Nacional Autónoma de México
  • Ana Carolina Ruiz-Fernández Universidad Nacional Autónoma de México
  • Javier Alcocer Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.22201/ib.20078706e.2022.93.4168

Palabras clave:

Arcellinida, Protistas, Reconstrucción paleoambiental, Lagos cráter, El Sol, La Luna

Resumen

Las amebas testadas son bioindicadores sensibles al cambio ambiental que presentan buena preservación en sedimentos de ambientes con pH bajo, tales como los lagos de alta montaña (LAM). Se documentaron la presencia y diversidad de amebas testadas en sedimentos superficiales y núcleos sedimentarios datados con 210Pb, de los únicos 2 LAM en México (El Sol y La Luna), que han presentado signos de cambios antrópicos recientes. Se registraron 18 taxones en total y las principales especies observadas en ambos lagos fueron Difflugia glans “glans” y D. globulosa. La riqueza específica y el índice de diversidad de Shannon fueron mayores en el lago El Sol que en el más pequeño,
ácido y ultraoligotrófico lago La Luna. Los núcleos sedimentarios registraron cambios durante los últimos 20 a 25 años en la composición de las comunidades de amebas testadas (El Sol) y en su dominancia (La Luna), así como el incremento en la tasa de acumulación y las concentraciones de hierro y carbono orgánico. Estos son signos del impacto antropogénico en los lagos, los cuales nos deben alertar para mejorar las medidas de protección para estos ecosistemas únicos, no sólo a nivel local (cráter), sino también con una perspectiva más regional.

Biografía del autor/a

Ana Carolina Ruiz-Fernández, Universidad Nacional Autónoma de México

    

Citas

Alcocer, J., Ruiz-Fernández, A. C., Oseguera, L. A., Caballero, M., Sánchez-Cabeza, J. A., Pérez-Bernal, L. H. et al. (2020). Sediment carbon storage increases in tropical, oligotrophic, high mountain lakes. Anthropocene, 32, 100272. https://doi.org/10.1016/j.ancene.2020.100272

Alcocer, J., Oseguera, L. A., Ibarra-Morales, D., Escobar, E., & García-Cid, L. (2021). Responses of benthic macroinvertebrate communities of two tropical, high-mountain lakes to climate change and deacidification. Diversity, 13, 243. https://doi.org/10.3390/d13060243

Asioli, A., Medioli, F. S., & Patterson, R. T. (1996). Thecamoebians as a tool for reconstruction of paleoenvironments in some Italian lakes in the foothills of southern Alps (Orta, Varese and Candia). Journal of Foraminiferal Research, 26, 248–263.

Battarbee, R. W., Thompson, R., Catalán, J., Grytnes, J. A., & Birks, H. J. B. (2002). Climate variability and ecosystem dynamics of remote alpine and artic lakes: the MOLAR project. Journal of Paleolimnology, 28, 1–6. https://doi.org/10.1023/A:1020342316326

Caballero, M. E. (1996). The diatom flora of two acid lakes in central Mexico. Diatom Research, 11, 227–240. https://doi.org/10.1080/0269249X.1996.9705381

Caballero, M., Zawisza, E., Hernández, M., Lozano-García, S., Ruiz-Córdova, J. P., Waters, M. N. et al. (2020). The Holocene history of a tropical high-altitude lake in central Mexico. The Holocene, 30, 865–877. https://doi.org/10.1177/0959683620902226

Catalán, J., Ventura, M., Brancelj, A., Granados, I., Thies, H., Nickus, U. et al. (2002). Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. Journal of Paleolimnology, 28, 25–46. https://doi.org/10.1023/A:1020315817235

Correa-Metrio, A., Meave, J. A., Lozano-García, S., & Bush, M. B. (2014). Environmental determinism and neutrality in vegetation at millennial time scales. Journal of Vegetation Science, 25, 627–635. https://doi.org/10.1111/jvs.12129

Cuna, E., Zawisza, E., Caballero, M., Ruiz-Fernández, A. C., Lozano-García, S., & Alcocer, J. (2014). Environmental impacts of Little Ice Age cooling in central Mexico recorded in the sediments of a tropical alpine lake. Journal of Paleolimnology, 51, 1–14. https://doi.org/10.1007/s10933-013-9748-0

Charqueño-Celis N., Garibay, M., Sigala, I., Brenner, M., Echeverria-Galindo, P., Lozano, S. et al. (2019). Testate amoebae (Amoebozoa: Arcellinidae) as indicators of dissolved oxygen concentration and water depth in lakes of the Lacandón Forest, southern Mexico. Journal of Limnology, 79, 82–91. http://dx.doi.org/10.4081/jlimnol.2019.1936

Dallimore, A., Schröder-Adams, C. J., & Dallimore, S. R. (2000). Holocene environmental history of thermokarst lakes on Richards Island, Northwest Territories, Canada: thecamoebians as paleolimnological indicators. Journal of Paleolimnology, 23, 261–283. https://doi.org/10.1023/A:1008184522637

Dimas-Flores, N., Alcocer, J., & Ciros-Pérez, J. (2008). The structure of the zooplankton assemblages from two neighboring tropical high mountain lakes. Journal of Freshwater Ecology, 23, 21–31. https://doi.org/10.1080/02705060.2008.9664554

Escobar, J., Brenner, M., Whitmore, T. J., Kenney, W. F., & Curtis, J. H. (2008). Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes. Journal of Paleolimnology, 40, 715–731. https://doi.org/10.1007/s10933-008-9195-5

Granados, I., Toro, M., & Rubio-Romero, A. (2006). Laguna Grande de Peñalara: 10 años de seguimiento limnológico. Madrid: Dirección General del Medio Natural, Consejería de Medio Ambiente y Ordenación del Territorio, Comunidad de Madrid.

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

ICZN. (1999). International Code of Zoological Nomenclature. London, U.K.: International Trust for Zoological Nomenclature.

Kihlman, S., & Kauppila, T. (2009). Mine water-induced gradients in sediment metals and arcellacean assemblages in a boreal freshwater bay (Petkellahti, Finland). Journal of Paleolimnology, 42, 533–550. https://doi.org/10.1007/s10933-008-9303-6

Koinig, K. A., Kamenik, C., Schmidt, R., Agustí-Panareda, A., Appleby, P., Lami, A. et al. (2002). Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries -the influence of air temperature on biological parameters. Journal of Paleolimnology, 28, 147–160. https://doi.org/10.1023/A:1020332220870

Kumar, A., & Dalby, A. P. (1998). Identification key for Holocene lacustrine arcellacean (thecamoebian) taxa. Palaeontologia Electronica, 1, 1–39.

Lee, J. J., Leedale, G., & Bradbury, P. (2000). An illustrated guide to the protozoa. Lawrence, Kansas: Blackwell Publishers.

McCarthy, M. G. F., Collins, E. S., McAndrews, J. H., Kerr, H. A., Scott, D. B., & Medioli, F. S. (1995). A comparison of postglacial Arcellacean ("Thecamoebian") and pollen succession in Atlantic Canada, illustrating the potential of Arcellaceans for paleoclimatic reconstruction. Journal of Paleontology, 69, 980–993. https://doi.org/10.1017/S0022336000035630

Ndayishimiye, J. C., Nyirabuhoro, P., Wang, Q., Yang, X., & Yang, J. (2020). Effects of natural and anthropogenic changes on testate amoebae communities in an alpine lake over the past 2500 years. Science of the Total Environment, 721, 137684. https://doi.org/10.1016/j.scitotenv.2020.137684

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B. et al. (2013). Package ‘vegan’. Community ecology package, 2, 1–295.

Oseguera, L. A., Alcocer, J., & Escobar, E. (2016). Macroinvertebrados bentónicos de dos lagos tropicales de alta montaña en el volcán Nevado de Toluca, en la región central de México. Hidrobiológica, 26, 419–432.

Patterson, R. T., & Kumar, A. (2000). Assessment of arcellacean (Thecamoebian) assemblages, species, and strains as contaminant indicators in James Lake, Northeastern Ontario, Canada. Journal of Foraminiferal Research, 30, 310–320. https://doi.org/10.2113/0300310

Patterson, R. T., & Kumar, A. (2002). Use of Arcellacea (Thecamoebians) to gauge levels of contamination and remediation in industrially polluted lakes. In R. E. Martin (Ed.), Environmental micropaleontology (pp. 257–278). Dordrecht, The Netherlands: Kluwer. https://doi.org/10.1007/978-1-4615-4167-7_12

Patterson, R. T., Lamoureux, E. D. R, Neville, L. A., & Macumber, A. L. (2013). Arcellacea (Testate Lobose Amoebae) as pH Indicators in a pyrite mine-acidified lake, Northeastern Ontario, Canada. Microbiology of Aquatic Systems, 65, 541–554. https://doi.org/10.1007/s00248-012-0108-9

Payne, R. J., & Mitchell, E. A. D. (2009). How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. Journal of Paleolimnology, 42, 483–495. https://doi.org/10.1007/s10933-008-9299-y

Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307, 321–326. https://doi.org/10.1038/307321a0

R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Searched on March 22, 2021 from: http://www.R-project.org/

Roy, P. D., Charles‐Polo, M. P., López‐Balbiaux, N., Pi‐Puig, T., Sankar, G. M., Lozano‐Santacruz, R. et al. (2014). Last glacial hydrological variations at the southern margin of sub‐tropical North America and a regional comparison. Journal of Quaternary Science, 29, 495–505. https://doi.org/10.1002/jqs.2718

SMN (Servicio Meteorológico Nacional). (2021). Searched on March 22, 2021 from: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica

Siemensma, F. J. (2021). Microworld, world of amoeboid organisms. World-wide electronic publication, Kortenhoef, the Netherlands. Searched on March 22, 2021 from: https://www.arcella.nl/

Sigala, I., Lozano-García, S., Escobar, J., Pérez, L., & Gallegos-Neyra, E. (2016). Testate amoebae (Amebozoa: Arcellinida) in tropical lakes of central Mexico. Revista de Biología Tropical, 64, 377–397.

Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S., Vázquez, G., Pérez-Alvarado, L. et al. (2017). Basic limnology of 30 continental waterbodies of the Transmexican Volcanic Belt across climatic and environmental gradients. Boletín de la Sociedad Geológica Mexicana, 69, 313–370. https://doi.org/10.18268/bsgm2017v69n2a3

Sigala, I., Lozano, S., Pérez, L., Caballero, M., & Lugo, A. (2018). Ecological drivers of testate amoeba diversity in tropical water bodies of central Mexico. Journal of Limnology, 77, 385–399. https://doi.org/10.4081/jlimnol.2018.1699

Swindles, G. T., & Roe, H. M. (2007). Examining the dissolution characteristics of testate amoebae (Protozoa: Rhizopoda) in low pH conditions: Implications for peatland palaeoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 486–496. https://doi.org/10.1016/j.palaeo.2007.05.004

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 77, 1300–1302. https://www.science.org/doi/10.1126/science.277.5330.1300

Toscana, A. A., & Granados, R. R. (2015). Recategorización del Parque Nacional Nevado de Toluca. Política y Cultura, 44, 79–105.

Trappeniers, K., Kerckvoorde, A. V., Chardez, D., Nijs, I., & Beyens, K. (1999). Ecology of testate amoebae communities from aquatic habitats in the Zackenberg area (Northeast Greenland). Polar Biology, 22, 271–278. https://doi.org/10.1007/s003000050420

Van Dam, H. (1982). On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwigia, 73, 97–115.

Wall, A. A. J., Magny, M., Mitchell, E. A. D., Vannière, B., & Gilbert, D. (2010). Response of testate amoeba assemblages to environmental and climatic changes during the Lateglacial–Holocene transition at Lake Lautrey (Jura Mountains, eastern France). Journal of Quaternary Science, 25, 945–956. https://doi.org/10.1002/jqs.1377

Wassen, M. J., Venterink, H. O., Lapshina, E. D., & Tanneberg, F. (2005). Endangered plants persist under phosphorus limitation. Nature, 437, 547–550. https://doi.org/10.1038/nature03950

Descargas

Publicado

2022-12-07

Número

Sección

ECOLOGÍA