Caracterización de las comunidades de amebas testadas de dos lagos tropicales de alta montaña en el centro de México durante los últimos ~60 años
DOI:
https://doi.org/10.22201/ib.20078706e.2022.93.4168Palabras clave:
Arcellinida, Protistas, Reconstrucción paleoambiental, Lagos cráter, El Sol, La LunaResumen
Las amebas testadas son bioindicadores sensibles al cambio ambiental que presentan buena preservación en sedimentos de ambientes con pH bajo, tales como los lagos de alta montaña (LAM). Se documentaron la presencia y diversidad de amebas testadas en sedimentos superficiales y núcleos sedimentarios datados con 210Pb, de los únicos 2 LAM en México (El Sol y La Luna), que han presentado signos de cambios antrópicos recientes. Se registraron 18 taxones en total y las principales especies observadas en ambos lagos fueron Difflugia glans “glans” y D. globulosa. La riqueza específica y el índice de diversidad de Shannon fueron mayores en el lago El Sol que en el más pequeño,
ácido y ultraoligotrófico lago La Luna. Los núcleos sedimentarios registraron cambios durante los últimos 20 a 25 años en la composición de las comunidades de amebas testadas (El Sol) y en su dominancia (La Luna), así como el incremento en la tasa de acumulación y las concentraciones de hierro y carbono orgánico. Estos son signos del impacto antropogénico en los lagos, los cuales nos deben alertar para mejorar las medidas de protección para estos ecosistemas únicos, no sólo a nivel local (cráter), sino también con una perspectiva más regional.
Citas
Alcocer, J., Ruiz-Fernández, A. C., Oseguera, L. A., Caballero, M., Sánchez-Cabeza, J. A., Pérez-Bernal, L. H. et al. (2020). Sediment carbon storage increases in tropical, oligotrophic, high mountain lakes. Anthropocene, 32, 100272. https://doi.org/10.1016/j.ancene.2020.100272
Alcocer, J., Oseguera, L. A., Ibarra-Morales, D., Escobar, E., & García-Cid, L. (2021). Responses of benthic macroinvertebrate communities of two tropical, high-mountain lakes to climate change and deacidification. Diversity, 13, 243. https://doi.org/10.3390/d13060243
Asioli, A., Medioli, F. S., & Patterson, R. T. (1996). Thecamoebians as a tool for reconstruction of paleoenvironments in some Italian lakes in the foothills of southern Alps (Orta, Varese and Candia). Journal of Foraminiferal Research, 26, 248–263.
Battarbee, R. W., Thompson, R., Catalán, J., Grytnes, J. A., & Birks, H. J. B. (2002). Climate variability and ecosystem dynamics of remote alpine and artic lakes: the MOLAR project. Journal of Paleolimnology, 28, 1–6. https://doi.org/10.1023/A:1020342316326
Caballero, M. E. (1996). The diatom flora of two acid lakes in central Mexico. Diatom Research, 11, 227–240. https://doi.org/10.1080/0269249X.1996.9705381
Caballero, M., Zawisza, E., Hernández, M., Lozano-García, S., Ruiz-Córdova, J. P., Waters, M. N. et al. (2020). The Holocene history of a tropical high-altitude lake in central Mexico. The Holocene, 30, 865–877. https://doi.org/10.1177/0959683620902226
Catalán, J., Ventura, M., Brancelj, A., Granados, I., Thies, H., Nickus, U. et al. (2002). Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. Journal of Paleolimnology, 28, 25–46. https://doi.org/10.1023/A:1020315817235
Correa-Metrio, A., Meave, J. A., Lozano-García, S., & Bush, M. B. (2014). Environmental determinism and neutrality in vegetation at millennial time scales. Journal of Vegetation Science, 25, 627–635. https://doi.org/10.1111/jvs.12129
Cuna, E., Zawisza, E., Caballero, M., Ruiz-Fernández, A. C., Lozano-García, S., & Alcocer, J. (2014). Environmental impacts of Little Ice Age cooling in central Mexico recorded in the sediments of a tropical alpine lake. Journal of Paleolimnology, 51, 1–14. https://doi.org/10.1007/s10933-013-9748-0
Charqueño-Celis N., Garibay, M., Sigala, I., Brenner, M., Echeverria-Galindo, P., Lozano, S. et al. (2019). Testate amoebae (Amoebozoa: Arcellinidae) as indicators of dissolved oxygen concentration and water depth in lakes of the Lacandón Forest, southern Mexico. Journal of Limnology, 79, 82–91. http://dx.doi.org/10.4081/jlimnol.2019.1936
Dallimore, A., Schröder-Adams, C. J., & Dallimore, S. R. (2000). Holocene environmental history of thermokarst lakes on Richards Island, Northwest Territories, Canada: thecamoebians as paleolimnological indicators. Journal of Paleolimnology, 23, 261–283. https://doi.org/10.1023/A:1008184522637
Dimas-Flores, N., Alcocer, J., & Ciros-Pérez, J. (2008). The structure of the zooplankton assemblages from two neighboring tropical high mountain lakes. Journal of Freshwater Ecology, 23, 21–31. https://doi.org/10.1080/02705060.2008.9664554
Escobar, J., Brenner, M., Whitmore, T. J., Kenney, W. F., & Curtis, J. H. (2008). Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes. Journal of Paleolimnology, 40, 715–731. https://doi.org/10.1007/s10933-008-9195-5
Granados, I., Toro, M., & Rubio-Romero, A. (2006). Laguna Grande de Peñalara: 10 años de seguimiento limnológico. Madrid: Dirección General del Medio Natural, Consejería de Medio Ambiente y Ordenación del Territorio, Comunidad de Madrid.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
ICZN. (1999). International Code of Zoological Nomenclature. London, U.K.: International Trust for Zoological Nomenclature.
Kihlman, S., & Kauppila, T. (2009). Mine water-induced gradients in sediment metals and arcellacean assemblages in a boreal freshwater bay (Petkellahti, Finland). Journal of Paleolimnology, 42, 533–550. https://doi.org/10.1007/s10933-008-9303-6
Koinig, K. A., Kamenik, C., Schmidt, R., Agustí-Panareda, A., Appleby, P., Lami, A. et al. (2002). Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries -the influence of air temperature on biological parameters. Journal of Paleolimnology, 28, 147–160. https://doi.org/10.1023/A:1020332220870
Kumar, A., & Dalby, A. P. (1998). Identification key for Holocene lacustrine arcellacean (thecamoebian) taxa. Palaeontologia Electronica, 1, 1–39.
Lee, J. J., Leedale, G., & Bradbury, P. (2000). An illustrated guide to the protozoa. Lawrence, Kansas: Blackwell Publishers.
McCarthy, M. G. F., Collins, E. S., McAndrews, J. H., Kerr, H. A., Scott, D. B., & Medioli, F. S. (1995). A comparison of postglacial Arcellacean ("Thecamoebian") and pollen succession in Atlantic Canada, illustrating the potential of Arcellaceans for paleoclimatic reconstruction. Journal of Paleontology, 69, 980–993. https://doi.org/10.1017/S0022336000035630
Ndayishimiye, J. C., Nyirabuhoro, P., Wang, Q., Yang, X., & Yang, J. (2020). Effects of natural and anthropogenic changes on testate amoebae communities in an alpine lake over the past 2500 years. Science of the Total Environment, 721, 137684. https://doi.org/10.1016/j.scitotenv.2020.137684
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B. et al. (2013). Package ‘vegan’. Community ecology package, 2, 1–295.
Oseguera, L. A., Alcocer, J., & Escobar, E. (2016). Macroinvertebrados bentónicos de dos lagos tropicales de alta montaña en el volcán Nevado de Toluca, en la región central de México. Hidrobiológica, 26, 419–432.
Patterson, R. T., & Kumar, A. (2000). Assessment of arcellacean (Thecamoebian) assemblages, species, and strains as contaminant indicators in James Lake, Northeastern Ontario, Canada. Journal of Foraminiferal Research, 30, 310–320. https://doi.org/10.2113/0300310
Patterson, R. T., & Kumar, A. (2002). Use of Arcellacea (Thecamoebians) to gauge levels of contamination and remediation in industrially polluted lakes. In R. E. Martin (Ed.), Environmental micropaleontology (pp. 257–278). Dordrecht, The Netherlands: Kluwer. https://doi.org/10.1007/978-1-4615-4167-7_12
Patterson, R. T., Lamoureux, E. D. R, Neville, L. A., & Macumber, A. L. (2013). Arcellacea (Testate Lobose Amoebae) as pH Indicators in a pyrite mine-acidified lake, Northeastern Ontario, Canada. Microbiology of Aquatic Systems, 65, 541–554. https://doi.org/10.1007/s00248-012-0108-9
Payne, R. J., & Mitchell, E. A. D. (2009). How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. Journal of Paleolimnology, 42, 483–495. https://doi.org/10.1007/s10933-008-9299-y
Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307, 321–326. https://doi.org/10.1038/307321a0
R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Searched on March 22, 2021 from: http://www.R-project.org/
Roy, P. D., Charles‐Polo, M. P., López‐Balbiaux, N., Pi‐Puig, T., Sankar, G. M., Lozano‐Santacruz, R. et al. (2014). Last glacial hydrological variations at the southern margin of sub‐tropical North America and a regional comparison. Journal of Quaternary Science, 29, 495–505. https://doi.org/10.1002/jqs.2718
SMN (Servicio Meteorológico Nacional). (2021). Searched on March 22, 2021 from: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica
Siemensma, F. J. (2021). Microworld, world of amoeboid organisms. World-wide electronic publication, Kortenhoef, the Netherlands. Searched on March 22, 2021 from: https://www.arcella.nl/
Sigala, I., Lozano-García, S., Escobar, J., Pérez, L., & Gallegos-Neyra, E. (2016). Testate amoebae (Amebozoa: Arcellinida) in tropical lakes of central Mexico. Revista de Biología Tropical, 64, 377–397.
Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S., Vázquez, G., Pérez-Alvarado, L. et al. (2017). Basic limnology of 30 continental waterbodies of the Transmexican Volcanic Belt across climatic and environmental gradients. Boletín de la Sociedad Geológica Mexicana, 69, 313–370. https://doi.org/10.18268/bsgm2017v69n2a3
Sigala, I., Lozano, S., Pérez, L., Caballero, M., & Lugo, A. (2018). Ecological drivers of testate amoeba diversity in tropical water bodies of central Mexico. Journal of Limnology, 77, 385–399. https://doi.org/10.4081/jlimnol.2018.1699
Swindles, G. T., & Roe, H. M. (2007). Examining the dissolution characteristics of testate amoebae (Protozoa: Rhizopoda) in low pH conditions: Implications for peatland palaeoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 486–496. https://doi.org/10.1016/j.palaeo.2007.05.004
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 77, 1300–1302. https://www.science.org/doi/10.1126/science.277.5330.1300
Toscana, A. A., & Granados, R. R. (2015). Recategorización del Parque Nacional Nevado de Toluca. Política y Cultura, 44, 79–105.
Trappeniers, K., Kerckvoorde, A. V., Chardez, D., Nijs, I., & Beyens, K. (1999). Ecology of testate amoebae communities from aquatic habitats in the Zackenberg area (Northeast Greenland). Polar Biology, 22, 271–278. https://doi.org/10.1007/s003000050420
Van Dam, H. (1982). On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwigia, 73, 97–115.
Wall, A. A. J., Magny, M., Mitchell, E. A. D., Vannière, B., & Gilbert, D. (2010). Response of testate amoeba assemblages to environmental and climatic changes during the Lateglacial–Holocene transition at Lake Lautrey (Jura Mountains, eastern France). Journal of Quaternary Science, 25, 945–956. https://doi.org/10.1002/jqs.1377
Wassen, M. J., Venterink, H. O., Lapshina, E. D., & Tanneberg, F. (2005). Endangered plants persist under phosphorus limitation. Nature, 437, 547–550. https://doi.org/10.1038/nature03950