Especies de lagartijas en tres islas frente a la costa del Pacífico mexicano: efectos de la insularidad

Autores/as

  • Héctor Hugo Siliceo-Cantero Universidad Nacional Autónoma de México https://orcid.org/0000-0002-8125-9203
  • Julieta Benítez-Malvido Universidad Nacional Autónoma de México
  • Ireri Suazo-Ortuño Universidad Michoacana de San Nicolás Hidalgo

DOI:

https://doi.org/10.22201/ib.20078706e.2023.94.4068

Palabras clave:

Aspidoscelis communis, Aspidoscelis lineattissima, Densidad por compensación, Liberación ecológica, Uso del hábitat, Expansión de nicho

Resumen

Este estudio provee un panorama descriptivo sobre comunidades de lagartijas en 3 islas y el continente en la costa del Pacífico mexicano, estimando el efecto insular (cambios ecológicos entre lagartijas de islas y del continente) sobre poblaciones de lagartijas. El panorama incluyó número de especies, frecuencia de encuentro y clase de edad. El efecto insular se estimó comparando estas variables, así como comportamiento de asoleo, actividad relacionada al microclima y percha usada en islas y continente. De 11 especies registradas, 8 se presentaron en islas; sin embargo, cada comunidad insular se compuso de 3 a 5 especies (4 protegidas por leyes mexicanas). La frecuencia de encuentro de todas las especies fluctuó entre 11 y 0.1 individuos por hora. Las comunidades de lagartijas se compusieron principalmente por adultos. Solo 2 especies, Aspidoscelis communis y A. lineattissima, se compartieron entre sitios, sin mostrar efecto insular sobre la frecuencia de encuentro ni comportamiento de asoleo. Sin embargo, hubo señales del efecto insular sobre clase de edad y efecto claro sobre percha usada, sugiriendo expansión del nicho. El estudio contribuye al conocimiento regional de especies de lagartijas, así como sobre teorías ecológicas como expansión del
nicho y compensación por densidad.

Biografía del autor/a

Héctor Hugo Siliceo-Cantero, Universidad Nacional Autónoma de México

Estudiante de Doctorado en el Posgrado en Ciencias Biológicas, instituto de Biología, Universidad Nacional Autónoma de México

Citas

Bauwens, D., & Castilla, A. M. (1998). Ontogenetic, sexual, and microgeographic variation in color pattern within a population of the lizard Podarcis lilfordi. Journal of Herpetology, 32, 581–586. https://doi.org/10.2307/1565215

Bolnick, D. I., Ingram, T., Stutz, W. E., Snowberg, L. K., Lau, O. L., & Paull, J. S. (2010). Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proceedings of the Royal Society B: Biological Sciences, 277, 1789–1797. https://doi.org/10.1098/rspb.2010.0018

Breuil, M., Schikorski, D., Vuillaume, B., Krauss, U., Morton, M. N., Corry, E. et al. (2020). Painted black: Iguana melanoderma (Reptilia, Squamata, Iguanidae) a new melanistic endemic species from Saba and Montserrat islands (Lesser Antilles). Zookeys, 926, 95–131. https://doi:10.3897/zookeys.926.48679

Bruinjé, A. C., Coelho, F. E., Paiva, T. M., & Costa, G. C. (2019). Aggression, color signaling, and performance of the male color morphs of a Brazilian lizard (Tropidurus semitaeniatus). Behavioral Ecology and Sociobiology, 73, 72. https://doi.org/10.1007/s00265-019-2673-0

Bullock, S. H. (1986). Climate of Chamela, Jalisco, and trends in the south coastal region of Mexico. Archives for Meteorology, Geophysics, and Bioclimatology, Series B, 36, 297–316. https://doi.org/10.1007/bf02263135

Campbell‐Staton, S. C., Edwards, S. V., & Losos, J. B. (2016). Climate‐mediated adaptation after mainland colonization of an ancestrally subtropical island lizard, Anolis carolinensis. Journal of Evolutionary Biology, 29, 2168–2180. https://doi.org/10.1111/jeb.12935

Calderón-Patrón, J. M. (2007). Biogeografía de Islas: el caso de la herpetofauna mexicana, (Master’s thesis). Universidad Autónoma del Estado de Hidalgo. Pachuca de Soto, Hidalgo, México.

Case, T. J. (1975). Species numbers, density compensation, and colonizing ability of lizards on islands in the Gulf of California. Ecology, 56, 3–18. https://doi.org/10.2307/1935296

Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human-induced species losses: entering the sixth mass extinction. Science, 1, e1400253. https://doi.org/10.1126/sciadv.1400253

Collins, C. E., Self, J. D., Anderson, R. A., & McBrayer, L. D. (2013). Rock-dwelling lizards exhibit less sensitivity of sprint speed to increases in substrate rugosity. Zoology, 116, 151–158. https://doi.org/10.1016/j.zool.2013.01.001

Conanp (Comisión Nacional de Áreas Naturales Protegidas). (2008). Programa de conservación y manejo. Santuario Islas de la Bahía de Chamela. México D.F.: Conanp.

Connor, E. F., Courtney, A. C., & Yoder, J. M. (2000). Individuals–area relationships: the relationship between animal population density and area. Ecology, 81, 734–748. https://doi.org/10.2307/177373

Cooper, W. E. Jr., Dimopoulos, I., & Pafilis, P. (2015). Sex, age, and population density affect aggressive behaviors in island lizards promoting cannibalism. Ethology, 121, 260–269. https://doi.org/10.1111/eth.12335

Crawley, M. J. (2007). The R book. Imperial College of London at Silwood Park, UK: John Wiley & Sons, https://doi.org/10.1002/9780470515075

de Amorim, M. E., Schoener, T. W., Santoro, G. R. C. C., Lins, A. C. R., Piovia-Scott, J., & Brandão, R. A. (2017). Lizards on newly created islands independently and rapidly adapt in morphology and diet. Proceedings of the National Academy of Sciences, 114, 8812–8816. https://doi.org/10.1073/pnas.1709080114

De Frenne, P., Rodríguez-Sánchez, F., Coomes, D. A., Baeten, L., Verstraeten, G., Vellend, M. et al. (2013). Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences, 110, 18561–18565. https://doi.org/10.1073/pnas.1311190110

Delaney, D. M., & Warner, D. A. (2017). Adult male density influences juvenile microhabitat use in a territorial lizard. Ethology, 123, 157–167. https://doi.org/10.1111/eth.12586

Díaz de la Vega-Pérez, A. H., Jiménez-Arcos, V. H., Manríquez-Morán, N. L., & Méndez-de la Cruz, F. R. (2013). Conservatism of thermal preferences between parthenogenetic Aspidoscelis cozumela complex (Squamata: Teiidae) and their parental species. The Herpetological Journal, 23, 93–104.

Doan, T. M. (2003). Which methods are most effective for surveying rain forest herpetofauna?. Journal of Herpetology, 37, 72–81. https://doi.org/10.1670/0022-1511(2003)037[0072:wmamef]2.0.co;2

Donihue, C. M., Brock, K. M., Foufopoulos, J., & Herrel, A. (2016). Feed or fight: testing the impact of food availability and intraspecific aggression on the functional ecology of an island lizard. Functional Ecology, 30, 566–575. https://doi.org/10.1111/1365-2435.12550

Duellman, W. E., & Wellman, J. (1960). A systematic study of the lizards of the deppei group (genus Cnemidophorus) in Mexico and Guatemala. https://doi.org/10.3998/mpub.9689998

Flores-Villela, O., & García-Vázquez, U. O. (2014). Biodiversidad de reptiles en México. Revista Mexicana de Biodiversidad, 85, 467–475. https://doi.org/10.7550/rmb.43236

Floyd, H. B., & Jenssen, T. A. (1983). Food habits of the Jamaican lizard Anolis opalinus: resource partitioning and seasonal effects examined. Copeia, 319–331. https://doi.org/10.2307/1444374

García, A. (2008). The use of habitat and time by lizards in a tropical deciduous forest in western Mexico. Studies on Neotropical Fauna and Environment, 43, 107–115. https://doi.org/10.1080/01650520701735282

García, A., & Ceballos, G. (1994). Guía de campo de los anfibios y reptiles de la costa de Jalisco. Fundación Ecológica Cuixmala, AC, Instituto de Biología, UNAM, México DF, México.

Gifford, M. E., Clay, T. A., & Powell, R. (2012). Habitat use and activity influence thermoregulation in a tropical lizard, Ameiva exsul. Journal of Thermal Biology, 37, 496–501. https://doi.org/10.1016/j.jtherbio.2012.05.003

Granados-González, G., Pérez-Almazán, C., Gómez-Benitez, A., Walker, J. M., & Hernández-Gallegos, O. (2020). Aspidoscelis costatus costatus (Squamata, Teiidae): high elevation clutch production for a population of whiptail lizards. Herpetozoa, 33, 131. https://doi.org/10.3897/herpetozoa.33.e54901

Güizado-Rodríguez, M. A., & Casas-Andreu, G. (2007). Ecología térmica de Aspidoscelis lineatissima (Reptilia: Teiidae) en Chamela, Jalisco. Boletín de la Sociedad Herpetológica Mexicana, 15, 31–39.

Güizado-Rodríguez, M. A., Reyes-Vaquero, L., & Casas-Andreu, G. (2014). Thermoregulation by a population of Aspidoscelis calidipes from Apatzingán, Michoacán, Mexico. The Southwestern Naturalist, 59, 132–135. https://doi.org/10.1894/n08-fjrr-04.1

Hernández-Salinas, U., Ramírez-Bautista, A., Pavón, N. P., & Pacheco, L. F. R. (2014). Morphometric variation in island and mainland populations of two lizard species from the Pacific Coast of Mexico. Revista Chilena de Historia Natural, 87, 21. https://doi.org/10.1186/s40693-014-0021-3

Hernández-Vázquez, S., Mellink, E., Castillo‐Guerrero, J. A., Rodríguez‐Estrella, R., Hinojosa‐Larios, J. Á., & Galván‐Piña, V. H. (2017). Ecología reproductiva del bobo café (Sula leucogaster) en tres islas del Pacífico tropical mexicano. Ornitología Neotropical, 28, 57–66.

Ibanez, T., Keppel, G., Baider, C., Birkinshaw, C., Culmsee, H., Cordell, S. et al. (2018). Regional forcing explains local species diversity and turnover on tropical islands. Global Ecology and Biogeography, 27, 474–486. https://doi.org/10.1111/geb.12712

Irschick, D. J., Vitt, L. J., Zani, P. A., & Losos, J. B. (1997). A comparison of evolutionary radiations in mainland and Caribbean Anolis lizards. Ecology, 78, 2191–2203. https://doi.org/10.2307/2265955

Itescu, Y., Schwarz, R., Meiri, S., & Pafilis, P. (2017). Intraspecific competition, not predation, drives lizard tail loss on islands. Journal of Animal Ecology, 86, 66–74. https://doi.org/10.1111/1365-2656.12591

Lê, S., Josse, J., & Husson, F. (2008). “FactoMineR: A Package for Multivariate Analysis.” Journal of Statistical Software, 25, 1–18. https://doi.org/10.18637/jss.v025.i01

Lister, B. C., & García, A. (1992). Seasonality, predation, and the behavior of a tropical mainland anole. Journal of Animal Ecology, 61, 717–733. https://doi.org/10.2307/5626

Lopez-Darias, M., Schoener. T. W., Spiller, D. A., & Losos, J. B. (2012). Predators determine how weather affects the spatial niche of lizard prey: exploring niche dynamics at a fine scale. Ecology, 93, 2512–2518. https://doi.org/10.1890/12-0483.1

Losos, J. B. (2009). Lizards in an evolutionary tree: ecology and adaptive radiation of anoles (Vol. 10). University of California Press, Berkley, USA. https://doi.org/10.1525/california/9780520255913.003.0011

Losos, J. B., & Queiroz, K. D. (1997). Evolutionary consequences of ecological release in Caribbean Anolis lizards. Biological Journal of the Linnean Society, 61, 459–483. https://doi.org/10.1111/j.1095-8312.1997.tb01802.x

Maass, M., Ahedo-Hernández, R., Araiza, S., Verduzco, A., Martínez-Yrízar, A., Jaramillo, V. J. et al. (2018). Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: Management implications under extreme hydrometeorological events. Forest Ecology and Management, 426, 7–17. https://doi.org/10.1016/j.foreco.2017.09.040

Marroquín-Páramo, J. A., Suazo-Ortuño, I., Urbina-Cardona, N., & Benítez-Malvido, J. (2021). Cumulative effects of high intensity hurricanes on herpetofaunal assemblages along a tropical dry forest chronosequence. Forest Ecology and Management, 479, 118505. https://doi.org/10.1016/j.foreco.2020.118505

Martín‐Queller, E., Albert, C. H., Dumas, P. J., & Saatkamp, A. (2017). Islands, mainland, and terrestrial fragments: How isolation shapes plant diversity. Ecology and Evolution, 7, 6904–6917. https://doi.org/10.1002/ece3.3150

Mateo, J. A., & Pleguezuelos, J. M. (2015). Cannibalism of an endemic island lizard (genus Gallotia). Zoologischer Anzeiger-A Journal of Comparative Zoology, 259, 131–134. https://doi.org/10.1016/j.jcz.2015.07.003

Medina-Aguilar, O., Alvarado-Díaz, J., & Suazo-Ortuño, I. (2011). Herpetofauna de Tacámbaro, Michoacán, México. Revista Mexicana de Biodiversidad, 82, 1194–1202. https://doi.org/10.22201/ib.20078706e.2011.4.740

Meiri, S. (2007). Size evolution in island lizards. Global Ecology and Biogeography, 16, 702–708. https://doi.org/10.1111/j.1466-8238.2007.00327.x

Meza-Lázaro, R. N., & Nieto-Montes de Oca, A. (2015). Long forsaken species diversity in the Middle American lizard Holcosus undulatus (Teiidae). Zoological Journal of the Linnean Society, 175, 189–210; https://doi:10.1111/zoj.12264

Muñoz, M. M., & Losos, J. B. (2018). Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. The American Naturalist, 191, E15–E26. https://doi.org/10.1086/694779

Muñoz, M. M., Langham, G. M., Brandley, M. C., Rosauer, D. F., Williams, S. E., & Moritz, C. (2016). Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards. Evolution, 70, 2537–2549. https://doi.org/10.1111/evo.13064

Navarro-García, J. C., García, A., & Méndez-de la Cruz, F. R. (2008). Estacionalidad, eficiencia termorreguladora de Aspidoscelis lineatissima (Sauria: Teiidae) y la calidad térmica del bosque tropical caducifolio en Chamela, Jalisco, México. Revista Mexicana de Biodiversidad, 79, 413–419. https://doi.org/10.22201/ib.20078706e.2008.002.559

Nicholson, K. E., Crother, B. I., Guyer, C., & Savage, J. M. (2018). Translating a clade-based classification into one that is valid under the international code of zoological nomenclature: the case of the lizards of the family Dactyloidae (Order Squamata). Zootaxa, 4461, 573–586. https://doi.org/10.11646/zootaxa.4461.4.7

Novosolov, M., & Meiri, S. (2013). The effect of island type on lizard reproductive traits. Journal of Biogeography, 40, 2385–2395. https://doi.org/10.1111/jbi.12179

Novosolov, M., Raia, P., & Meiri, S. (2013). The island syndrome in lizards. Global Ecology and Biogeography, 22, 184–191. https://doi.org/10.1111/j.1466-8238.2012.00791.x

Novosolov, M., Rodda, G. H., Feldman, A., Kadison, A. E., Dor, R., & Meiri, S. (2016). Power in numbers. Drivers of high population density in insular lizards. Global Ecology and Biogeography, 25, 87–95. https://doi.org/10.1111/geb.12390

Olsson, M., Loeb, L., Lindsay, W., Wapstra, E., Fitzpatrick, L., & Shine, R. (2018). Extreme plasticity in reproductive biology of an oviparous lizard. Ecology and Evolution, 8, 6384–6389. https://doi.org/10.1002/ece3.4247

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Ramírez-Reyes, T., Piñero, D., Flores-Villela, O., & Vázquez-Domínguez, E. (2017). Molecular systematics, species delimitation and diversification patterns of the Phyllodactylus lanei complex (Gekkota: Phyllodactylidae) in Mexico. Molecular Phylogenetics and Evolution, 115, 82–94. https://doi.org/10.1016/j.ympev.2017.07.008

Reséndiz-López, M. A., Flores-Villela, O., Canseco-Márquez, L., Hernández-Robles, D., & Lemos-Espinal, J. A. (2021). Lista de las especies de anfibios y reptiles con distribución en México. v1.0. Dataset/Checklist. Available at: http://ipttest.conabio.gob.mx/iptconabiotest/resource?r=herpetofaunamexico&v=1.0

Riddle, S. (2018). Forecasting the winners and lossers of a riparian herpetofauna in response to habitat invasion and xerification (Master's Thesis). Arizona State University, USA.

Sagonas, K., Valakos, E. D., & Pafilis, P. (2013). The impact of insularity on the thermoregulation of a Mediterranean lizard. Journal of Thermal Biology, 38, 480–486. https://doi.org/10.1016/j.jtherbio.2013.08.004

Semarnat (Secretaría de Medio Ambiente y Recursos Naturales). (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección Ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo, publicada el 30 de diciembre de 2010. Diario Oficial de la Federación, México, D.F.

Siliceo‐Cantero, H. H., Benítez‐Malvido, J., & Suazo‐Ortuño, I. (2020). Insularity effects on the morphological space and sexual dimorphism of a tropical tree lizard in western Mexico. Journal of Zoology, 311, 277–285. https://doi.org/10.1111/jzo.12783

Siliceo-Cantero, H. H., & García, A. (2015). Actividad y uso del hábitat de una población insular y una continental de lagartijas Anolis nebulosus (Squamata: Polychrotidae) en un ambiente estacional. Revista Mexicana de Biodiversidad, 86, 406–411. https://doi.org/10.1016/j.rmb.2015.04.011

Siliceo-Cantero, H. H., & García, A. (2016). Anolis nebulosus (Clouded Anole) life expectancy. Herpelogical Review, 47, 665.

Siliceo‐Cantero, H. H., García, A., Reynolds, R. G., Pacheco, G., & Lister, B. C. (2016). Dimorphism and divergence in island and mainland Anoles. Biological Journal of the Linnean Society, 118, 852–872. https://doi.org/10.1111/bij.12776

Siliceo-Cantero, H. H., Zúñiga-Vega, J. J., Renton, K., & Garcia, A. (2017). Assessing the relative importance of intraspecific and interspecific interactions on the ecology of Anolis nebulosus lizards from an island vs. a mainland population. Herpetological Conservation and Biology, 12, 673–682.

Sinervo, B., Méndez-de la Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M. et al. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894–899. https://doi.org/10.1126/science.1184695

Suazo-Ortuño, I., Benítez-Malvido, J., Marroquín-Páramo, J., Soto, Y., Siliceo, H., & Alvarado-Díaz, J. (2018). Resilience and vulnerability of herpetofaunal functional groups to natural and human disturbances in a tropical dry forest. Forest Ecology and Management, 426, 145–157. https://doi.org/10.1016/j.foreco.2017.09.041

Tallowin, O. J., Tamar, K., Meiri, S., Allison, A., Kraus, F., Richards, S. J. et al. (2017). Early insularity and subsequent mountain uplift were complementary drivers of diversification in a Melanesian lizard radiation (Gekkonidae: Cyrtodactylus). Molecular Phylogenetics and Evolution, 125, 29–39. https://doi.org/10.1016/j.ympev.2018.03.020

Traveset, A. (1995). Seed dispersal of Cneorum tricoccon L. (Cneoraceae) by lizards and mammals in the Balearic islands. Acta Oecologica, 16, 171–178.

Ureta, C., Cuervo-Robayo, A. P., Calixto-Pérez, E., González-Salazar, C., & Fuentes-Conde, E. (2018). A first approach to evaluate the vulnerability of islands’ vertebrates to climate change in Mexico. Atmósfera, 31, 221–254. https://doi.org/10.20937/atm.2018.31.03.03

Valido, A., & Olesen, J. M. (2007). The importance of lizards as frugivores and seed dispersers. In A. J. Dennis, E. W. Schupp, R. Green, & D. A. Westcott (Eds.), Seed dispersal: theory and its application in a changing world (pp. 124–147). Wallingford, UK: Cabi Digital Library. https://doi.org/10.1079/9781845931650.0124

Van Damme, R. (1999). Evolution of herbivory in lacertid lizards: effects of insularity and body size. Journal of Herpetology, 33, 663–674. https://doi.org/10.2307/1565584

Velasco, J. A., Poe, S., González-Salazar, C., & Flores-Villela, O. (2019). Solitary ecology as a phenomenon extending beyond insular systems: exaptive evolution in Anolis lizards. Biology Letters, 15, 20190056. https://doi.org/10.1098/rsbl.2019.0056

Walkup, D. K., Leavitt, D. J., & Fitzgerald, L. A. (2017). Effects of habitat fragmentation on population structure of dune‐dwelling lizards. Ecosphere, 8, e01729. https://doi.org/10.1002/ecs2.1729

Descargas

Publicado

2023-02-17

Número

Sección

CONSERVACIÓN