Identificación de secuencias de ARN viral en murciélagos vampiros (Desmodus rotundus) de México central

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2022.93.4021

Palabras clave:

Chikungunya, Dengue, Flaviviridae, Rabia, Rhabdoviridae, Murciélago vampiro, Zika

Resumen

Los murciélagos son reservorios importantes de virus que pueden causar diversos problemas económicos y de salud en diferentes sectores. El propósito de este estudio fue determinar la prevalencia del virus de la rabia en murciélagos vampiro. También se evaluó la prevalencia de 3 virus zoonóticos más en el tejido recolectado. Se capturó un total de 45 individuos, los cuales fueron medidos y sexados bajo parámetros estándar. Se efectuó la reacción de RT-PCR para amplificar los productos virales de 4 tipos de virus: chikungunya (CHIKV), dengue (DENV), rabia (RABV) y Zika (ZIKV) de tejido cerebral. Se obtuvo un amplicón de 100 pb para ZIKV en 2 muestras, lo que representa una prevalencia del 4.4%. Para el caso de RABV, se obtuvo un amplicón de 581 pb en 9 individuos, lo que equivale al 20% de la muestra. Se obtuvieron 4 haplotipos diferentes para RABV y un solo haplotipo para ZIKV. También se evaluó la presencia de virus del dengue (DENV) y virus de chikungunya (CHIKV), pero no se encontraron muestras positivas. Se corroboró la presencia de la familia Rhabdoviridae en el murciélago vampiro y se registró por primera vez la presencia de ZIKV en Desmodus rotundus.

Biografía del autor/a

Aldo Espinoza-Gómez, Instituto Politécnico Nacional

Lic. en Biología en Departamento de Zoología

Diana D. Moreno-Santillán, Texas Tech University

Postdoctoral researcher of Department of Biological Sciences

Rafael Juárez-Maldonado, Instituto Politécnico Nacional

Estudiante de posgrado en Departamento de Zoología

Edgar G. Gutiérrez, Instituto Politécnico Nacional

Estudiante de doctorado en Departamento de Zoología

Ma. Isabel Salazar, Instituto Politécnico Nacional

Investigador Titular C en Departamento de Microbiología

Luis A. Alonso-Palomares, Instituto Politécnico Nacional

Estudiante de Doctorado en Departamento de Microbiología

Juan Carlos López-Vidal, Instituto Politécnico Nacional

Profesor Titular en Departamento de Zoología

Cinthia Elizalde-Arellano, Instituto Politécnico Nacional

Profesor Titular en Departamento de Zoología

Jorge Ortega, Instituto Politécnico Nacional

Escuela Nacional de Ciencias Biológicas

Investigador Titular C en Departamento de Zoología

Citas

Abundes-Gallegos, J., Salas-Rojas, M., Gálvez-Romero, G., Perea-Martínez, L., Obregón-Morales, C. Y., Morales-Malacara, J. B. et al. (2018). Detection of dengue virus in bat flies (Diptera: Streblidae) of common vampire bats, Desmodus rotundus, in Progreso, Hidalgo, Mexico. Vector-Borne and Zoonotic Diseases, 18, 70–73.

Agarwal, A., Vibha, D., Srivastava, A. K., Shukla, G., & Prasad, K. (2017). Guillain-Barre syndrome complicating chikungunya virus infection. Journal of Neurovirology, 23, 504–507. https://doi.org/10.1007/s13365-017-0516-1

Aguilar-Setien, A., León Campos, Y., Tesoro-Cruz, E., Kretschmer, R., Brochier, B., & Pastoret, P. R. (2002). Vaccination of vampire bats using recombinant vaccinia-Rabies virus. Journal of Wildlife Diseases, 38, 539–544. https://doi.org/10.7589/0090-3558-38.3.539

Althouse, B. M., Guerbois, M., Cummings, D. A. T., Diop, O. M., Faye, O., Faye, A. et al. (2018). Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal. Nature Communications, 9, 1046.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Anderson, A., Shwiff, S. S., & Shwiff, S. A. (2014). Economic impact of the potential spread of vampire bats into South Texas. In R. M. Timm, & J. M. O’Brien (Eds.), Proceedings 26th Vertebrate Pest Conference (pp. 305–309). University of California, USA.

Anderson, K. B., Thomas, S. J., & Endy, T. P. (2016). The emergence of Zika virus. A narrative review. Annals of Internal Medicine, 165, 175–183. https://doi.org/10.7326/M16-0617

Bobrowiec, P. E. D., Lemes, M. R., & Brigel, R. (2015). Prey preference of the common vampire bat (Desmodus rotundus, Chiroptera) using molecular analysis. Journal of Mammalogy, 96, 54–63.

Bosco-Lauth, A., Nemeth, N. M., Kohler, D. J., & Bowen, R. A. (2016). Viremia in North American mammals and birds after experimental infection with Chikungunya viruses. American Journal of Tropical Medicine Hygiene, 94, 504–506. https://doi.org/10.4269/ajtmh.15-0696

Bueno, M. G., Martínez, N., Abdalla, L., Duarte Dos Santos, C. N., & Chame, M. (2016). Animals in the Zika Virus life cycle: What to expect from megadiverse Latin American countries. Plos Neglected Tropical Diseases, 10, e0005073. https://doi.org/10.1371/journal.pntd.0005073

Calderón, A., Guzmán, C., Mattar, S., Rodríguez, V., Martínez, C., Violet, L. et al. (2019). Dengue virus in bats from Córdoba and Sucre, Colombia. Vector Borne and Zoonotic Diseases, 19, 747–751. https://doi.org/10.1089/vbz.2018.2324

Calderón-Peláez, M. A., Velandia-Romero, M. L., Bastidas-Legarda, L. Y., Beltrán, E. O., Camacho-Ortega, S. J., & Castellanos, J. E. (2019). Dengue virus infection of blood-brain barrier cells: consequences of severe disease. Frontiers in Microbiology, 10, 1435. https://doi.org/10.3389/fmicb.2019.01435

Calisher, C. H. (2015). Viruses in bats: a historic review. In L. F. Wang, & C. Cowled (Eds.), Bats and viruses: a new frontier of emerging infectious diseases (pp. 23–45). New Jersey: John Wiley & Son.

Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., & Schountz, T. (2006). Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19, 531–545. https://doi.org/10.1128/CMR.00017-06

Chan, J. F. W., Choi, G. K. Y., Yip, C. C. Y., Cheng, V. C. C., & Yuen, K.-Y. (2016). Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. Journal of Infection, 72, 507–524. https://doi.org/10.1016/j.jinf.2016.02.011

Chien, L. J., Liao, T. L., Shu, P. Y., Huang, J. H., Gubler, D. J., & Chang, G. J. (2006). Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. Journal of Clinical Microbiology, 44, 295–304. https://doi.org/10.1128/JCM.44.4.1295-1304.2006

Chomczynsli, P. & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 161, 156–159.

Cifuentes-Jiménez, J. F., Pérez-López, R. D., & Verjan-García, N. (2017). Bat reservoirs for Rabies virus and epidemiology of rabies in Colombia: a review. Revista CES Medicina Veterinaria Zootecnista, 12, 134–150. https://doi.org/10.21615/cesmvz.12.2.5

Colón-González, F. J., Fezzi, C., Lake, I., & Hunter, P. R. (2013). The effects of weather and climate change on Dengue. Plos Neglected Tropical Diseases, 7, e2503. https://doi.org/10.1371/journal.pntd.0002503

Cunze, S., Kochmann, J., Koch, L. K., Genthner, E., & Klimpel, S. (2019). Vector distribution and transmission risk of the Zika virus in South and Central America. PeerJ, 7, e7920. https://doi.org/10.7717/peerj.7920

Da Rosa, E. S. T., Kotatit, I., Barbosa, T. F. S., Carrieri, M. L., Brandão, P. E., Pinheiro, A. S. et al. (2006). Bat-transmitted human Rabies outbreaks, Brazilian Amazon. Emerging Infectious Diseases, 12, 1197–1202. https://doi.org/0.3201/1208.050929

Dato, V. M., Campagnolo, E. R., Long, J., & Rupprecht, C. R. (2016). A systematic review of human bat Rabies virus variant cases: Evaluating unprotected physical contact with claws and teeth in support of accurate risk assessments. Plos One, 11, e0159443. https://doi.org/10.1371/journal.pone.0159443

Elizalde-Arellano, C., López-Vidal, J. C., Uhart, E. Q., Campos-Rodríguez, J. I., & Hernández-Arciga, R. (2010). Nuevos registros y extensiones de distribución de mamíferos para Guanajuato, México. Acta Zoológica Mexicana, 26, 73–98. https://doi.org/10.21829/azm.2010.261681

Ellison, J. A., Johnson, S. R., Kuzmina, N., Gilbert, A., Carson, W. C., Vercauteren, K. C. et al. (2013). Multidisciplinary approach to epizootiology and pathogenesis of bat Rabies viruses in the United States. Zoonoses and Public Health, 60, 46–57. https://doi.org/10.1111/zph.12019

Escobar, L. E., Townsend-Peterson, A., Favi, M., Yung, V., & Medina-Vogel, G. (2015). Bat-borne Rabies in Latin America. Revista del Instituto de Medicina Tropical de Sao Paulo, 57, 63–72. https://doi.org/10.1590/S0036-46652015000100009

Fagre, A. C., & Kading, R. C. (2019). Can bats serve as reservoirs for Arboviruses? Viruses, 11, 215. https://doi.org/10.3390/v11030215

Forster, M. (2015). Network 5.0.0.0 User Guide. In Fluxus Technology 2020. Network 10. Consulted January 08, 2019 of: www.fluxus-engineering.com/Network5000 _user_guide.pdf

Gonçalves, F., Galetti, M., & Streicker, D. (2021). Management of vampire bats and rabies: a precaution for rewilding projects in the Neotropics. Perspectives in Ecology and Conservation, 19, 37–42. https://doi.org/10.1016/j.pecon.2020.12.005

Greenhall, A. M., Joermann, G., & Schmidt, U. (1983). Desmodus rotundus. Mammalian Species, 202, 1–6. https://doi.org/10.2307/3503895

Hall, T. (2001). BioEdit v5.0.6 Program distributed by the author. Department of Microbiology. North Carolina State University. North Carolina, USA.

Hernández-Aguilar, I., Lorenzo, C., Santos-Moreno, A., Navarrete Gutiérrez, D., & Naranjo, E. J. (2021). Current knowledge and ecological and human impact variables involved in the distribution of the dengue virus by bats in the Americas. Vector-Borne and Zoonotic Diseases, 21, 217–231. https://doi.org/10.1089/vbz.2020.2696

Higgs, S., & Ziegler, S. A. (2010). A nonhuman primate model of chikungunya disease. The Journal of Clinical Investigation, 120, 657–660. https://doi.org/10.1172/JCI42392

Johnson, C. K., Hitchens, P. L., Pandit, P. S., Rushmore, J., Evans, T. S., Young, C. C. W., & Doyle, M. M. (2020). Global shifts in mammalian population trends reveal key of virus spill over risk. Proceeding of the Royal Society B, 287, 20192736. https://doi.org/10.1098/rspb.2019.2736

Johnson, N., Aréchiga-Ceballos, N., & Aguilar-Setien, A. (2014). Vampire bat rabies: Ecology, epidemiology and control. Viruses, 6, 1911–1928. https://doi.org/10.3390/v6051911

Kading, R. C., & Schountz, T. (2016). Flavivirus infections of bats: potential role in Zika virus ecology. The American Journal of Tropical Medicine and Hygiene, 95, 993–996. https://doi.org/10.4269/ajtmh.16-0625

Kumar, R., Rajvanshi, P., Khosla, H., & Aroa, S. (2019). Neuro-Chikungunya: acute transverse myelopathy associated with Chikungunya virus infection. The Journal of the Association of Physicians of India, 67, 84–85.

Kunz, T. H. (1990). Ecological and behavioural methods for the study of bats. Washington D.C.: Smithsonian Institution.

Kuzmin, I. V., & Rupprecht, C. E. (2015). Bat Lyssaviruses. In L. F. Wang, & C. Cowled (Eds.), Bats and viruses: a new frontier of emerging infectious diseases (pp. 47–97). New Jersey: John Wiley & Son.

Lavergne, A., Lacoste, V., Germain, A., Matheus, S., Dussart, P., Deparis, X. et al. (2009). Dengue virus infection in neotropical forest mammals: Incidental hosts or potential reservoirs? Médecine Tropicale: Revue du Corps de Santé Colonial, 69, 345–350.

Machain-Williams, C., López-Uribe, M., Talavera-Aguilar, L., Carrillo-Navarrete, J., Vera-Escalante, L., Puerto-Manzano, F. et al. (2013). Serologic evidence of Flavivirus infection in bats in the Yucatán Peninsula of Mexico. Journal of Wildlife Disease, 49, 684–689. https://doi.org/10.7589/2012-12-318

Malmlov, A., Bantle, C., Aboellail, T., Wagner, K., Campbell, C. L., Eckley, M. et al. (2019). Experimental Zika virus infection of Jamaican fruit bats (Artibeus jamaicensis) and possible entry of virus into brain via activated microglial cells. PLoS Neglected Tropical Diseases, 13, e0007071. https://doi.org/10.1371/journal.pntd.0007071

Medellín, R. A., Arita, H., & Sánchez, O. (2008). Identificación de los murciélagos de México, clave de Campo. Ciudad de México: Instituto de Ecología, Universidad Nacional Autónoma de México.

Mollentze, N., & Streicker, D. G. (2020). Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. PNAS, 117, 9423–9430. https://doi.org/10.1073/pnas.1919176117

Moser, L. A., Boylan, B. T., Moreira, F. R., Myers, L. J., Svenson, E. L., Fedorova, N. B. et al. (2018). Growth and adaptation of Zika virus in mammalian and mosquito cells. Plos Neglected Tropical Diseases, 12, e0006880. https://doi.org/10.1371/journal.pntd.0006880

Nadin-Davis, S. A., & Loza, E. (2006). The molecular epidemiology of rabies associated with chiropteran hosts in Mexico. Virus Research, 117, 215–226. https://doi.org/10.1016/j.virusres.2005.10.006

Noor, R., & Ahmed, T. (2018). Zika virus: Epidemiological study and its association with public health risk. Journal of Infection and Public Health, 11, 611–616. https://doi.org/10.1016/j.jiph.2018.04.007

Pandit, P. S., Doyle M. M., Smart, K. M., Young C. C. W., Drape G. W., & Johnson C. K. (2018). Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nature Communications, 9, 5425. https://doi.org/10.1038/s41467-018-07896-2

Perea-Martínez, L., Moreno-Sandoval, H. N., Moreno-Altamirano, M. M., Salas-Rojas, M. M., García-Flores, M. M., Aréchiga-Ceballos, N. et al. (2013). Experimental infection of Artibeus intermedius bats with serotype-2 dengue virus. Comparative Immunology, Microbiology & Infectious Diseases, 36, 193–198. https://doi.org/10.1016/j.cimid.2012.12.002

Petersen, L. R., & Marfin, A. A. (2005). Shifting epidemiology of Flaviviridae. Journal of Travel Medicine, 12, S3–S11. https://doi.org/10.2310/7060.2005.12052

Piaggio, A. J., Russell, A. L., Osorio, I. A., Jiménez-Ramírez, A., Fischer, J. W., Neuwald, J. L. et al. (2017). Genetic demography at the leading edge of the distribution of a rabies virus vector. Ecology and Evolution, 7, 1–9. https://doi.org/10.1002/ece3.3087

Premawansa, S., Wijewickrama, A., Premawansa, G. et al. (2019). Dengue type 1 viruses circulating in humans are highly infectious and poorly neutralized by human antibodies. Proceedings of the National Academy of Sciences, 116, 227–232. https://doi.org/10.1073/pnas.1812055115

Quan, P. L., Firth, C., Conte, J. M., Williams, S. H., Zambrana-Torrelio, C. M., Anthony, S. J. et al. (2013). Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proceedings of the National Academy of Sciences, 110, 8194–8199. https://doi.org/10.1073/pnas.130303711

Raut, R., Corbett, K. S., Tennekoon, R. N., Romero-Nava, C., León-Paniagua, L., & Ortega, J. (2014). Microsatellite loci reveal heterozygosis and population structure in vampire bats (Desmodus rotundus) (Chiroptera: Phyllostomidae) of Mexico. International Journal of Tropical Biology and Conservation, 62, 659–669.

Schountz, T. (2014). Immunology of bats and their viruses: Challenges and opportunities. Viruses, 6, 4880–4901. https://doi.org/10.3390/v6124880

Shaily, S., & Upadhya, A. (2019). Zika virus: Molecular responses and tissue tropism in the mammalian host. Reviews in Medical Virology, 29, e2050. https://doi.org/10.1002/rmv.2050

Sikes, R. S., & the Animal Care and Use Committee of the American Society of Mammalogists. (2016). Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy, 97, 663–688. https://doi.org/10.1093/jmammal/gyw078

Stoner-Duncan, B, Streicker, D. G., & Tedeschi, C. M. (2014). Vampire bats and Rabies: Toward an ecological solution to a public health problem. Plos Neglected Tropical Diseases, 8, e2867. https://doi.org/10.1371/journal.pntd.0002867

Streicker, D. G., & Allgeiger, J. E. (2016). Foraging choices of vampire bats in diverse landscapes: potential implications for land‐use change and disease transmission. Journal of Applied Ecology, 53, 1280–1288. https://doi.org/10.1111/1365-2664.12690

Streicker, D. G., Recuenco, S., Valderrama, W., Gómez-Benavides, J., Vargas, I., Pacheco, V. et al. (2012). Ecological and anthropogenic drivers of rabies exposure in vampire bats: Implications for transmission and control. Proceedings of the Royal Society B, 279, 3384–3392. https://doi.org/10.1098/rspb.2012.0538

Streicker, D. G., Winternitz, J. C., Satterfield, D. A., Condori-Condori, R. E., Broos, A., Tello, C. et al. (2016). Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proceedings of the National Academy of Sciences, 113, 10926–10931. https://doi.org/10.1073/pnas.160658711

Terzian, A. C. B., Zini, N., Saccheto, L., Rocha, R. F., Parra, M. C. P., Del Sarto, J. L. et al. (2018). Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Scientific Reports, 8, 16034. https://doi.org/10.1038/s41598-018-34423-6

Tsetsarkin, K. A., Chen R., Leal G., Forrester N., Higgs S., Huang J. et al. (2011). Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proceeding of the National Academy of Sciences, 108, 7872–7877. https://doi.org/10.1073/pnas.1018344108

van Den Pol, A. N., Mao, G., Chattopadhyay, A., Rose, J. K., & Davis, J. N. (2017). Chikungunya, Influenza, Nipah, and Semliki forest chimeric viruses with vesicular stomatitis virus: Actions in the brain. Journal of Virology, 91, e02154–16. https://doi.org/10.1128/JVI.02154-16

Velandia-Romero, M., Calderón-Peláez, M. A., & Castellanos, J. E. (2016). In Vitro infection with dengue virus changes in the structure and function of the mouse brain endothelium. Plos One, 11, e0157786. https://doi.org/10.1371/journal.pone.0157786

Velasco, V. A., Orciari, L. A., Juárez, V., Gómez, M., Padilla, I., & Flisser, A. (2006). Molecular diversity of rabies associated with bats in Mexico and other countries of the Americas. Journal of Clinical Microbiology, 44, 1697–1710. https://doi.org/10.1128/JCM.44.5.1697-1710.2006

Vicente-Santos, A., Moreira-Soto, A., Soto-Garita, C., Chaverri, L. G., Chaves, A., Drexler, J. F. et al. (2017). Neotropical bats that co-habit with human function as dead-end hosts for dengue virus. Plos Neglected Tropical Diseases, 11, e0005537. https://doi.org/10.1371/journal.pntd.0005537

Vourc´h, G., Halos, L., Desvars, A., Boué F., Pascal M., Lecollinet S. et al. (2014). Chikungunya antibodies detected in non-human primates and rats in three Indian Ocean islands after the 2006 ChikV outbreak. Veterinary Research, 45, 52.

Weissenböck, H., Hubálek, Z., Bakonyi, T., & Nowtny, N. (2010). Zoonotic mosquito-borne flaviviruses: Worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Veterinary Microbiology, 140, 271–280. https://doi.org/10.1016/j.vetmic.2009.08.025

Woo, P. C., Lau, S. K., Li, K. S., Poon, R. W., Wong, B. H., Tsoi, H. W. et al. (2006). Molecular diversity of coronaviruses in bats. Virology, 351, 180–187. https://doi.org/10.1016/j.virol.2006.02.041

Yactayo, S., Staples, J. E., Millot, V., Cibrelus, L., & Ramon-Pardo, P. (2016). Epidemiology of Chikungunya in the Americas. The Journal of Infectious Diseases, 214, S441–S445. https://doi.org/10.1093/infdis/jiw390

Zhang, H. L., Shi, H. F., & Liu, L. H. (1989). Isolation of chikungunya virus from bat in Yunnan province and serological investigations. Chinese Journal of Virology, 5, 31–36. https://doi.org/10.1371/journal.pone.0061950

Zhang, J., Rowe, W. L., Clark, A. G., & Buetow, K. H. (2003). Genome wide distribution of high-frequency, completely mismatching SNP haplotype pairs observed to be common across human populations. American Journal of Human Genetics, 73, 1073–1081. https://doi.org/10.1086/379154

Zunk, J. R. (2017). Neurologic manifestations of Zika virus infection. Anales de la Facultad de Medicina, 8, 83–87.

Publicado

2022-10-18

Número

Sección

ECOLOGÍA