Modelando la conectividad funcional del ratón tlacuache (Tlacuatzin canescens) en un bosque tropical caducifolio altamente amenazado de la costa del Pacífico mexicano

Autores/as

  • Ariana González Universidad Michoacana de San Nicolás de Hidalgo
  • Clementina González Universidad Michoacana de San Nicolás de Hidalgo https://orcid.org/0000-0003-2048-069X
  • Rafael Hernández-Guzmán Universidad Michoacana de San Nicolás de Hidalgo
  • Eduardo Mendoza Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.22201/ib.20078706e.2022.93.3934

Palabras clave:

Bosque tropical caducifolio, Didelphidae, Áreas naturales protegidas, Matrices de resistencia, Pequeños mamíferos

Resumen

La conectividad del paisaje entre áreas naturales protegidas y sus alrededores es esencial para mantener el movimiento de la fauna, promover el flujo y la diversidad genética. Usamos al ratón tlacuache (Tlacuatzin canescens) para modelar la conectividad funcional entre la Reserva de la Biosfera Chamela-Cuixmala, que mantiene una importante extensión de bosque tropical caducifolio (BTC) en la costa del Pacífico mexicano y los parches de vegetación circundante. El modelo de conectividad funcional se realizó a través de la teoría de grafos y circuitos, utilizando una matriz de resistencias y el área mínima de parches de hábitat adecuado. Se identificaron 38 parches de hábitat adecuado para T. canescens y 60 corredores potenciales. Tres parches adyacentes a la CCBR jugaron el papel más importante para mantener la conectividad del BTC. En contraste, los parches de hábitat adecuados menos conectados se encuentran inmersos en una matriz compuesta por áreas dedicadas a la ganadería y agricultura, incrementando la pérdida y aislamiento de parches de bosque. Nuestros resultados resaltan no solo la importancia de mantener grandes parches de hábitat adecuado, sino también parches más pequeños que podrían desempeñar un papel importante como peldaños, promoviendo la conectividad del hábitat para T. canescens y especies similares.

Citas

Adriaensen, F., Chardon, J. P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H. et al. (2003). The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning, 64, 233–247. https://doi.org/10.1016/S0169-2046(02)00242-6

Alexandre, B., Crouzeilles, R., & Grelle, C. E. V. (2010). How can we estimate buffer zones of protected areas? A proposal using biological data. Natureza & Conservação, 8, 165–170. https://doi.org/10.4322/NATCON.00802010

Arreola-Gómez, R., & Mendoza, E. (2020). Marsupial visitation to the inflorescences of the endemic Agave cupreata in western Mexico. Western North American Naturalist, 80, 563–568. https://doi.org/10.3398/064.080.0417

Beier, P., Majka, D. R., & Newell, S. L. (2009). Uncertainty analysis of least‐cost modeling for designing wildlife linkages. Ecological Applications, 19, 2067–2077. https://doi.org/10.1890/08-1898.1

Benedek, A. M., & Sîrbu, I. (2018). Responses of small mammal communities to environment and agriculture in a rural mosaic landscape. Mammalian Biology, 90, 55–65. https://doi.org/10.1016/j.mambio.2018.02.008

Bennett, G. (2004). Integrating biodiversity conservation and sustainable use: lessons learned from ecological networks. Gland, Switzerland, and Cambridge, UK: IUCN.

Birney, E. C., Grant, W. E., & Baird, D. D. (1976). Importance of vegetative cover to cycles of Microtus populations. Ecology, 57, 1043–1051. https://doi.org/10.2307/1941069

Bowman, J., Jaeger, J. A., & Fahrig, L. (2002). Dispersal distance of mammals is proportional to home range size. Ecology, 83, 2049–2055. https://doi.org/10.1890/0012-9658(2002)083[2049:DDOMIP]2.0.CO;2

Bowne, D. R., Peles, J. D., & Barrett, G. W. (1999). Effects of landscape spatial structure on movement patterns of the hispid cotton rat (Sigmodon hispidus). Landscape Ecology, 14, 53–65. https://doi.org/10.1023/A:1008025827895

Brooker, L., & Brooker, M. (2002). Dispersal and population dynamics of the Blue-breasted Fairy-wren, Malurus pulcherrimus, in fragmented habitat in the Western Australian wheatbelt. Wildlife Research, 29, 225–233. https://doi.org/10.1071/WR01113

Bruner, A. G., Gullison, R. E., Rice, R. E., & Da Fonseca, G. A. (2001). Effectiveness of parks in protecting tropical biodiversity. Science, 291, 125–128. https://doi.org/10.1126/science.291.5501.125

Bullock, S. H., Mooney, H. A., & Medina, E. (1995). Seasonally dry tropical forests. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511753398

Calabrese, J. M., & Fagan, W. F. (2004). A comparison‐shopper's guide to connectivity metrics. Frontiers in Ecology and the Environment, 2, 529–536. https://doi.org/10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2

Ceballos, G. (1990). Comparative natural history of small mammals from tropical forests in western Mexico. Journal of Mammalogy, 71, 263–66. https://doi.org/10.2307/1382182

Ceballos, G., & Arroyo-Cabrales, J. (2013). Lista actualizada de los mamíferos de México 2012. Revista Mexicana de Mastozoología, 2, 27–80. https://doi.org/10.22201/ie.20074484e.2012.2.1.20

Ceballos, G., & García, A. (1995). Conserving Neotropical biodiversity: the role of dry forests in western Mexico. Conservation Biology, 9, 1349–1356. https://doi.org/10.1046/j.1523-1739.1995.09061349.x

Ceballos, G., & Miranda, A. (2000). A field guide to the mammals of the Jalisco Coast, Mexico. México D.F.: Fundación Ecológica de Cuixmala AC/ Universidad Nacional Autónoma de México.

Ceballos, G. &, Oliva, G. (2005). Los mamíferos silvestres de México. México D.F.: Fondo de Cultura Económica.

Ceballos, G., Martínez, L., García, A., & Espinoza, E. (2010). Áreas prioritarias para la conservación de las selvas secas del Pacífico mexicano. In G. Ceballos, L. Martínez, A. García, E. Espinoza, J. Bezaury-Creel, & R. Dirzo (Eds.), Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México (pp. 387–392). México D.F.: Fondo de Cultura Económica/ Conabio.

Correa-Ayram, C. A., Mendoza, M. E., Pérez-Salicrup, D. R., & López-Granados, E. (2014). Identifying potential conservation areas in the Cuitzeo Lake basin, Mexico by multitemporal analysis of landscape connectivity. Journal for Nature Conservation, 22, 424–435. https://doi.org/10.1016/j.jnc.2014.03.010

Corry, R. C. (2005). Characterizing fine-scale patterns of alternative agricultural landscapes with landscape pattern indices. Landscape Ecology, 20, 591–608. https://doi.org/10.1007/s10980-004-5036-8

Cruz-Lara, L. E., Lorenzo, C., Soto, L., Naranjo, E., & Ramírez-Marcial, N. (2004). Diversidad de mamíferos en cafetales y selva mediana de las Cañadas de La Selva Lacandona, Chiapas, México. Acta Zoológica Mexicana, 20, 63–81.

Cuenca, P., & Echeverría, C. (2017). How do protected landscapes associated with high biodiversity and population levels change? Plos One, 12, e0180537. https://doi.org/10.1371/journal.pone.0180537

De Clerck, F. A., Chazdon, R., Holl, K. D., Milder, J. C., Finegan, B., Martínez-Salinas, A. et al. (2010). Biodiversity conservation in human-modified landscapes of Mesoamerica: past, present and future. Biological Conservation, 143, 2301–2313. https://doi.org/10.1016/j.biocon.2010.03.026

de la Peña, N. M., Butet, A., Delettre, Y., Paillat, G., Morant, P., Le Du, L. et al. (2003). Response of the small mammal community to changes in western French agricultural landscapes. Landscape Ecology, 18, 265–278. https://doi.org/10.1023/A:1024452930326

Decout, S., Manel, S., Miaud, C., & Luque, S. (2012). Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landscape Ecology, 27, 267–279. https://doi.org/10.1007/s10980-011-9694-z

Delgado-Trejo, C., Herrera-Robledo, R., Martínez-Hernández, N., Bedolla-Ochoa, C., Hart, C. E., Alvarado-Díaz, J. et al. (2018). Vehicular impact as a source of wildlife mortality in the Western Pacific Coast of Mexico. Revista Mexicana de Biodiversidad, 89, 1234–1244. https://doi.org/10.22201/ib.20078706e.2018.4.2084.

Eastman, J. R. (2016). TerrSet Manual. Clark labs. Worcester, MA: Clark University.

Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J. et al. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14, 101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x

FAO, Forest Resources Division FD (2015). “México - Evaluación de los recursos forestales mundiales - Informe Nacional 2015” http://www.fao.org/documents/card/es/c/154c5a2b-882d-4d3e-b040-7dd52a778d17/

Flores-Casas, R., & Ortega-Huerta, M. A. (2019). Modelling land cover changes in the tropical dry forest surrounding the Chamela-Cuixmala biosphere reserve, Mexico. International Journal of Remote Sensing, 40, 6948–6974. https://doi.org/10.1080/01431161.2019.1597305

Foltête, J. C. (2018). A parcel-based graph to match connectivity analysis with field action in agricultural landscapes: Is node removal a reliable method? Landscape and Urban Planning, 178, 32–42. https://doi.org/10.1016/j.landurbplan.2018.05.016

Forman, R. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207–231. https://doi.org/10.1146/annurev.ecolsys.29.1.207

Freeman, B., Roehrdanz, P. R., & Peterson, A. T. (2019). Modeling endangered mammal species distributions and forest connectivity across the humid Upper Guinea lowland rainforest of West Africa. Biodiversity and Conservation, 28, 671–685. https://doi.org/10.1007/s10531-018-01684-6

García, A. (2006). Using ecological niche modeling to identify diversity hotspots of the herpetofauna of Pacific lowlands and adjacent interior valleys of Mexico. Biological Conservation, 130, 25–46. https://doi.org/10.1016/j.biocon.2005.11.030

Garmendia, A., Arroyo-Rodríguez, V., Estrada, A., Naranjo, E. J., & Stoner, K. E. (2013). Landscape and patch attributes impacting medium-and large-sized terrestrial mammals in a fragmented rain forest. Journal of Tropical Ecology, 29, 331–344. https://doi.org/10.1017/S0266467413000370

Ghazoul, J. (2005). Pollen and seed dispersal among dispersed plants. Biological Reviews, 80, 413–443. https://doi.org/10.1017/s1464793105006731

González-Christen, A., & Rodríguez, N. V. (2014). Primer registro de Tlacuatzin canescens, (Mammalia, Didelphimorphia, Marmosidae) en Veracruz, México. Therya, 5, 845–854. https://doi.org/10.12933/therya-14-221

Gordon, C. L. (2003). A first look at estimating body size in dentally conservative marsupials. Journal of Mammalian Evolution, 10, 1–21. https://doi.org/10.1023/A:1025545023221

Hansen, A. J., & DeFries, R. (2007). Ecological mechanisms linking protected areas to surrounding lands. Ecological Applications, 17, 974–988. https://doi.org/10.1890/05-1098

Hernández-Guzmán, R., Ruiz-Luna, A., & González, C. (2019). Assessing and modeling the impact of land use and changes in land cover related to carbon storage in a western basin in Mexico. Remote Sensing Applications: Society and Environment, 13, 318–327. https://doi.org/10.1016/j.rsase.2018.12.005

Howe, H. F., & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–228. https://doi.org/10.1146/annurev.es.13.110182.001221

Hutchison, D. W., & Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1898–1914. https://doi.org/10.2307/2640449

Jamieson, I. G., & Allendorf, F. W. (2012). How does the 50/500 rule apply to MVPs? Trends in Ecology and Evolution, 27, 578–584. https://doi.org/10.1016/j.tree.2012.07.001

Janzen, D. H. (1988). Tropical dry forests. In E. O. Wilson (Ed.), Biodiversity (pp. 130–137). Washington DC: National Academic Press.

Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54, 1593–1600.

Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352, 9–20. https://doi.org/10.1016/j.foreco.2015.06.014

Kennedy, M. L., Schnell, G. D., Romero-Almaraz, M. L., Malakouti, B. S., Sánchez-Hernández, C., Bes, T. L. et al. (2013). Demographic features, distribution, and habitat selection of the gray mouse opossum (Tlacuatzin canescens) in Colima, Mexico. Acta Theriologica, 58, 285–298. https://doi.org/10.1007/s13364-012-0117-6

Laurance, W. F., Useche, D. C., Rendeiro, J., Kalka, M., Bradshaw, C. J., & Sloan, S. P. (2012). Averting biodiversity collapse in tropical forest protected areas. Nature, 489, 290–294. https://doi.org/10.1038/nature11318

Lobova, T. A., Geiselman, C. K., & Mori, S. A. (2009). Seed dispersal by bats in the Neotropics. New York Botanical Garden.

Lorenzo, C., & González-Ruiz, N. (2018). Mammals in the Mexican Official Norm NOM-059-SEMARNAT-2010. Therya, 9, 69–72. https://doi.org/10.12933/therya-18-565

Lovegrove, B. G., Körtner, G., & Geiser, F. (1999). The energetic cost of arousal from torpor in the marsupial Sminthopsis macroura: benefits of summer ambient temperature cycles. Journal of Comparative Physiology B, 169, 11–18. https://doi.org/10.1007/s003600050188

Luck, G. W., & Daily, G. C. (2003). Tropical countryside bird assemblages: richness, composition, and foraging differ by landscape context. Ecological Applications, 13, 235–247. https://doi.org/10.1890/1051-0761(2003)013[0235:TCBARC]2.0.CO;2

Mader, H. J. (1984). Animal habitat isolation by roads and agricultural fields. Biological Conservation, 29, 81–96. https://doi.org/10.1016/0006-3207(84)90015-6

Martin, G. M. (2017). Tlacuatzin canescens. The IUCN Red List of Threatened Species 2017, e.T12813A22177663. https://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T12813A22177663.en

McRae, B. H., & Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104, 19885–19890. https://doi.org/10.1073/pnas.0706568104

Mellink, E. (1985). Agricultural disturbance and rodents: three farming systems in the Sonoran Desert. Journal of Arid Environments, 8, 207–222. https://doi.org/10.1016/S0140-1963(18)31282-5

Melo, G. L., Sponchiado, J., Cáceres, N. C., & Fahrig, L. (2017). Testing the habitat amount hypothesis for South American small mammals. Biological Conservation, 209, 304–314. https://doi.org/10.1016/j.biocon.2017.02.031

Merriam, G., Kozakiewicz, M., Tsuchiya, E., & Hawley, K. (1989). Barriers as boundaries for metapopulations and demes of Peromyscus leucopus in farm landscapes. Landscape Ecology, 2, 227–235. https://doi.org/10.1007/BF00125093

Merrick, M. J., & Koprowski, J. L. (2017). Circuit theory to estimate natal dispersal routes and functional landscape connectivity for an endangered small mammal. Landscape Ecology, 32, 1163–1179. https://doi.org/10.1007/s10980-017-0521-z

Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S. et al. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33, 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x

Moilanen, A. (2011). On the limitations of graph-theoretic connectivity in spatial ecology and conservation. Journal of Applied Ecology, 48, 1543–1547. https://doi.org/10.1111/j.1365-2664.2011.02062.x

Moilanen, A., & Hanski, I. (2001). On the use of connectivity measures in spatial ecology. Oikos, 95, 147–151. https://www.jstor.org/stable/3547357

Moore, R. P., Robinson, W. D., Lovette, I. J., & Robinson, T. R. (2008). Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecology Letters, 11, 960–968. https://doi.org/10.1111/j.1461-0248.2008.01196.x

Morales-Díaz, S. P., Álvarez-Añorve, M. Y., Zamora-Espinoza, M. E., Dirzo, R., Oyama, K., & Ávila-Cabadilla, L. D. (2019). Rodent community responses to vegetation and landscape changes in early successional stages of tropical dry forest. Forest Ecology and Management, 433, 633–644. https://doi.org/10.1016/j.foreco.2018.11.037

Olifiers, N., Vieira, M. V., & Grelle, C. E. V. (2004). Geographic range and body size in Neotropical marsupials. Global Ecology and Biogeography, 13, 439–444. https://www.jstor.org/stable/3697574

Passamani, M., & Fernández, F. A. S. (2011). Abundance and richness of small mammals in fragmented Atlantic Forest of southeastern Brazil. Journal of Natural History, 45, 553–565. https://doi.org/10.1080/00222933.2010.534561

Pires, M. M., Martins, E. G., Silva, M. N. F., & Dos Reis, S. F. (2010). Gracilinanus microtarsus (Didelphimorphia: Didelphidae). Mammalian Species, 42, 33–40. https://doi.org/10.1644/851.1

Portillo-Quintero, C. A., & Sánchez-Azofeifa, G. A. (2010). Extent and conservation of tropical dry forests in the Americas. Biological Conservation, 143, 144–155. https://doi.org/10.1016/j.biocon.2009.09.020

Ricketts, T. H. (2001). The matrix matters: effective isolation in fragmented landscapes. American Naturalist, 158, 87–99. https://doi.org/10.1086/320863

Robichaux, R. H., & Yetman, D. (2000). The tropical deciduous forest of Alamos: biodiversity of a threatened ecosystem in Mexico. Tucson: University of Arizona Press.

Rosenberg, D. K., Noon, B. R., & Meslow, E. C. (1997). Biological corridors: form, function, and efficacy. Bioscience, 47, 677–687. https://doi.org/10.2307/1313208

Ruefenacht, B., & Knight, R. L. (1995). Influences of corridor continuity and width on survival and movement of deermice Peromyscus maniculatus. Biological Conservation, 71, 269–274. https://doi.org/10.1016/0006-3207(94)00036-P

Saura, S., Bertzky, B., Bastin, L., Battistella, L., Mandrici, A., & Dubois, G. (2019). Global trends in protected area connectivity from 2010 to 2018. Biological Conservation, 238, 108183. https://doi.org/10.1016/j.biocon.2019.07.028

Saura, S., & Pascual-Hortal, L. (2007). A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning, 83, 91–103. https://doi.org/10.1016/j.landurbplan.2007.03.005

Saura, S., & Torné, J. (2012). Conefor 2.6 user manual. Madrid: Universidad Politécnica de Madrid.

Saura, S., Vogt, P., Velázquez, J., Hernando, A., & Tejera, R. (2011). Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. Forest Ecology and Management, 262, 150–160. https://doi.org/10.1016/j.foreco.2011.03.017

Sawyer, S. C., Epps, C. W., & Brashares, J. S. (2011) Placing linkages among fragmented habitats: Do least-cost models reflect how animals use landscapes? Journal of Applied Ecology, 48, 668–678. https://doi.org/10.1111/j.1365-2664.2011.01970.x

Schipper, J., Chanson, J. S., Chiozza, F., Cox, N. A., Hoffmann, M., Katariya, V. et al., (2008). The status of the world's land and marine mammals: diversity, threat, and knowledge. Science, 322, 225–230. https://doi.org/10.1126/science.1165115

Seiferling, I. S., Proulx, R., Peres‐Neto, P. R., Fahrig, L., & Messier, C. (2012). Measuring protected‐area isolation and correlations of isolation with land‐use intensity and protection status. Conservation Biology, 26, 610–618. https://doi.org/10.1111/j.1523-1739.2011.01674.x

Shah, V. B., & McRae, B. H. (2008). Circuitscape: a tool for landscape ecology. In Proceedings of the 7th Python in Science Conference. Pasadena, California, USA: SciPy 7, 62-66.

Stoner, K. E., & Timm, R. M. (2004). Tropical dry-forest mammals of Palo Verde: Ecology and conservation in a changing landscape. In G. W. Frankie, A. Mata, & B. S. Vinson (Eds.), Biodiversity conservation in Costa Rica: learning the lessons in a seasonal dry forest (pp. 48–66). Berkley: University of California Press.

Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38, 913–920. https://doi.org/10.1029/TR038i006p00913

Taylor, P., Fahrig, L., & With, K. (2006). Landscape connectivity: a return to the basics. In K. Crooks, & M. Sanjayan (Eds.), Connectivity Conservation, Conservation Biology (pp. 29–43). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511754821

Theobald, D. M., Reed, S. E., Fields, K., & Soule, M. (2012). Connecting natural landscapes using landscape permeability model to prioritize conservation activities in the United States. Conservation Letters, 5, 123–133. https://doi.org/10.1111/j.1755-263X.2011.00218.x

Tischendorf, L., & Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90, 7–19. https://doi.org/10.1034/j.1600-0706.2000.900102.x

Trejo, I. (2010). Las selvas secas del Pacífico mexicano. In G. Ceballos, L. Martínez, A. García, E. Espinoza, J. Bezauty-Creel, & R. Dirzo (Eds.), Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México (pp. 41–51). México D.F.: Fondo de Cultura Económica/ Conabio.

Trejo, I., & Dirzo, R. (2000). Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biological Conservation, 94, 133–142. https://doi.org/10.1016/S0006-3207(99)00188-3

Trejo, I., & Dirzo, R. (2002). Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity and Conservation, 11, 2063–2084. https://doi.org/10.1023/A:1020876316013

Turchin, P. (1998). Quantitative analysis of movement: measuring and modeling population redistribution of plants and animals. Sunderland, MA: Sinauer Associates.

Vandermeer, J., & Carvajal, R. (2001). Metapopulation dynamics and the quality of the matrix. American Naturalist, 158, 211–220. https://doi.org/10.1086/321318

Vieira-De Matos, T. P., Vieira-De Matos, V. P., De Mello, K., & Averna, R. V. (2019). Protected areas and forest fragmentation: sustainability index for prioritizing fragments for landscape restoration. Geology, Ecology and Landscapes, 5, 19–31. https://doi.org/10.1080/24749508.2019.1696266

Villers-Ruiz, L., & Trejo-Vázquez, I. (1998). Climate change on Mexican forests and natural protected areas. Global Environmental Change, 8, 141–157. https://doi.org/10.1016/S0959-3780(98)00012-0

Voss, R. S., & Jansa, S. A. (2009). Phylogenetic relationships and classification of didelphid marsupials, an extant radiation of the New World metatherian mammals. Bulletin of the American Museum of Natural History, 2009, 1–177.

Wade, A. A., McKelvey, K. S., & Schwartz, M. K. (2015). Resistance-surface-based wildlife conservation connectivity modeling: Summary of efforts in the United States and guide for practitioners. Gen. Tech. Rep. RMRS-GTR-333. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-333

Wikelski, M., Kays, R. W., Kasdin, N. J., Thorup, K., Smith, J. A., & Swenson, G. W. (2007). Going wild: what a global small-animal tracking system could do for experimental biologists. Journal of Experimental Biology, 210, 181–186. https://doi.org/10.1242/jeb.02629

Wilson, M. C., Chen, X. Y., Corlett, R. T., Didham, R. K., Ding, P., R. D. Holt et al. (2015). Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology, 31, 219–227. https://doi.org/10.1007/s10980-015-0312-3

Wilson, D. E., & Reeder, D. M. (2005). Mammal species of the world: a taxonomic and geographic reference. Baltimore, MD: The Johns Hopkins University Press.

With, K. A. (1997). The application of neutral landscape models in conservation biology. Conservation Biology, 11, 1069–1080. https://www.jstor.org/stable/2387389

Zarza, H., Ceballos, G., & Steele, M. A. (2003). Marmosa canescens. Mammalian Species, 725, 1–4. https://doi.org/10.1644/0.725.1

Zeller, K. A., Nijhawan, S., Salom-Pérez, R., Potosme, S. H., & Hines, J. E. (2011). Integrating occupancy modeling and interview data for corridor identification: a case study for jaguars in Nicaragua. Biological Conservation, 144, 892–901. https://doi.org/10.1016/j.biocon.2010.12.003

Publicado

2022-09-30

Número

Sección

CONSERVACIÓN