Genetic and morphological evidence cast doubt on the validity of Mexican troglobitic species of the Neotropical catfish genus Rhamdia (Siluriformes: Heptapteridae)

Autores/as

  • Jairo Arroyave Instituto de Biología, Universidad Nacional Autónoma de México http://orcid.org/0000-0002-5389-1789
  • Dalia Angélica De La Cruz-Fernández Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.22201/ib.20078706e.2021.92.3718

Palabras clave:

Rhamdia reddelli, Rhamdia zongolicensis, Rhamdia macuspanensis, Rhamdia laluchensis, Troglomorphism, Cave fishes, DNA barcoding, Geometric morphometrics

Resumen

Four of the 7 species of Rhamdia present in Mexico stand out for being microendemic and also troglobitic, that is, for being restricted to their type-locality caves and for exhibiting a distinctive phenotype characterized by ocular reduction/loss and body depigmentation. Diagnosis and recognition of Mexican troglobitic forms as distinct species, however, appears to be primarily based on their regressive troglomorphic phenotype and highly localized geographic distributions. To test the adequacy of its current taxonomy, we investigated patterns of genetic and phenotypic variation in Mexican troglobitic Rhamdia in a phylogenetic context. Our results indicate that external morphology does not allow for unambiguous differential diagnoses and robust distinction among troglobitic species. Similarly, beyond typical
regressive troglomorphic traits, troglobitic species do not differ greatly in external morphology from their most closely related congener, the epigean species Rhamdia laticauda. From a phylogenetic perspective, continued recognition of troglobitic species implies a deep and generalized paraphyly in R. laticauda. Despite the evidence presented herein, we refrain from making nomenclatural decisions until we can unambiguously ascertain that our findings are indeed explained by phylogeographic structure in R. laticauda, instead of by recent divergence and subsequent speciation of cave-dwelling lineages from this widespread epigean species.

Biografía del autor/a

Jairo Arroyave, Instituto de Biología, Universidad Nacional Autónoma de México

Investigador Asociado C, Departamento de Zoología, IBUNAM

Citas

Adams, D. C., & Otárola-Castillo, E. (2013). geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4, 393–399. https://doi.org/10.1111/2041-210X.12035

Arroyave, J., Martinez, C. M., Martínez-Oriol, F. H., Sosa, E., & Alter, S. E. (2020). Regional-scale aquifer hydrogeology as a driver of phylogeographic structure in the Neotropical catfish Rhamdia guatemalensis (Siluriformes: Heptapteridae) from cenotes of the Yucatán Peninsula, Mexico. Freshwater Biology, 2020, 1–17. https://doi.org/10.1111/fwb.13641

Arroyave, J., Martinez, C. M., & Stiassny, M. L. J. (2019). DNA barcoding uncovers extensive cryptic diversity in the African long-fin tetra Bryconalestes longipinnis (Alestidae: Characiformes). Journal of Fish Biology, 95, 379–392. https://doi.org/10.1111/jfb.13987

Bailey, R. C., & Byrnes, J. (1990). A new, old method for assessing measurement error in both univariate and multivariate morphometric studies. Systematic Biology, 39, 124–130. https://doi.org/10.2307/2992450

Bichuette, M. E., & Trajano, E. (2005). A new cave species of Rhamdia (Siluriformes: Heptapteridae) from Serra do Ramalho, northeastern Brazil, with notes on ecology and behavior. Neotropical Ichthyology, 3, 587–595. https://doi.org/10.1590/S1679-62252005000400016

Bilandžija, H., Hollifield, B., Steck, M., Meng, G., Ng, M., Koch, A. D. et al. (2020). Phenotypic plasticity as a mechanism of cave colonization and adaptation. eLife, 9, e51830. https://doi.org/10.7554/elife.51830

Bockmann, F. A. (1998). Análise filogenética da família Heptapteridae (Teleostei, Ostariophysi, Siluriformes) e redefinição de seus gêneros (PhD. Thesis). Universidade de São Paulo, São Paulo, Brasil.

Bookstein, F. L. (1989). Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 567–585. https://doi.org/10.1109/34.24792

Bookstein, F. L. (1997). Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis, 1, 225–243. https://doi.org/10.1016/S1361-8415(97)85012-8

Bussing, W. A. (1987). Peces de las aguas continentales de Costa Rica. Editorial Universidad de Costa Rica.

Čandek, K., & Kuntner, M. (2015). DNA barcoding gap: reliable species identification over morphological and geographical scales. Molecular Ecology Resources, 15, 268–277. https://doi.org/10.1111/1755-0998.12304

Coyne, J. A., & Orr, H. A. (1989). Patterns of speciation in Drosophila. Evolution, 43, 362–381. https://doi.org/10.1111/j.1558-5646.1989.tb04233.x

Crisp, M. D., & Chandler, G. T. (1996). Paraphyletic species. Telopea, 6, 813–844. http://dx.doi.org/10.7751/telopea19963037

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest2: more models, new heuristics and parallel computing. Nature Methods, 9, 772–772. https://doi.org/10.1038/nmeth.2109

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x

de Carvalho, D. C., Oliveira, D. A., Pompeu, P. S., Leal, C. G., Oliveira, C. et al. (2011). Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River basin. Mitochondrial DNA, 22(Suppl.), 80–86. https://doi.org/10.3109/19401736.2011.588214

de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886. https://doi.org/10.1080/10635150701701083

Decru, E., Moelants, T., Gelas, K. D., Vreven, E., Verheyen, E., & Snoeks, J. (2016). Taxonomic challenges in freshwater fishes: a mismatch between morphology and DNA barcoding in fish of the north-eastern part of the Congo basin. Molecular Ecology Resources, 16, 342–352. https:// doi.org/10.1111/1755-0998.12445

Do Nascimiento, C., Provenzano, F., & Lundberg, J. G. (2004). Rhamdia guasarensis (Siluriformes: Heptapteridae), a new species of cave catfish from the Sierra de Perijá, northwestern Venezuela. Proceedings of the Biological Society of Washington, 117, 564–574. https://doi.org/10.1590/ S1679-62252005000400016

Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. http://dx.doi.org/10.1186/1471-2105-5-113

Folmer, O., Hoeh, W. R., Black, M. B., & Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

Fricke, R., Eschmeyer, W. N., & Van der Laan, R. (2020). Eschmeyer’s catalog of fishes: genera, species, references. Accessed Jul 18, 2020. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

Garavello, J. C., & Shibatta, O. A. (2016). Reappraisal of Rhamdia branneri Haseman, 1911 and R. voulezi Haseman, 1911 (Siluriformes: Heptapteridae) from the rio Iguaçu with notes on their morphometry and karyotype. Neotropical Ichthyology, 14. https://doi.org/10.1590/1982-0224-20140111

García-Dávila, C., Castro-Ruiz, D., Renno, J. F., Chota- Macuyama, W., Carvajal-Vallejos, F. M., Sanchez, H. et al. (2015). Using barcoding of larvae for investigating the breeding seasons of Pimelodid catfishes from the Marañon, Napo and Ucayali rivers in the Peruvian Amazon. Journal of Applied Ichthyology, 31, 40–51. https://doi.org/10.1111/ jai.12987

Greenfield, D. W., Greenfield, T. A., & Woods, R. L. (1982). A new subspecies of cave-dwelling pimelodid catfish, Rhamdia laticauda typhla from Belize, Central America. Brenesia, 19/20, 563–576.

Gross, J. B. (2012). The complex origin of Astyanax cavefish.

BMC Evolutionary Biology, 12, 1–12. https://doi.org/10.1186/1471-2148-12-105

Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005) Semilandmarks in three dimensions. In D. E. Slice (Eds.), Modern Morphometrics in physical Anthropology. Developments in Primatology: progress and prospects. Boston, MA: Springer. https://doi.org/10.1007/0-387-27614-9_3

Haldane, J. B. S. (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12, 101–109. https://doi.org/10.1007/BF02983075

Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4, 9.

Hausdorf, B., Wilkens, H., & Strecker, U. (2011). Population genetic patterns revealed by microsatellite data challenge the mitochondrial DNA based taxonomy of Astyanax in Mexico (Characidae, Teleostei). Molecular Phylogenetics and Evolution, 60, 89–97. https://doi.org/10.1016/j. ympev.2011.03.009

Hebert, P. D. N., Ratnasingham, S., & deWaard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270, S96–S99. https://doi.org/10.1098/rsbl.2003.0025

Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. Plos Biology, 2, e312. https://doi.org/10.1371/journal.pbio.0020312

Helfman, G., Collette, B. B., Facey, D. E., & Bowen, B. W. (2009). The diversity of fishes: biology, evolution, and ecology. Hoboken, New Jersey: Wiley-Blackwell.

Hernández, C. L., Ortega-Lara, A., Sánchez-Garcés, G. C., & Alford, M. H. (2015). Genetic and morphometric evidence for the recognition of several recently synonymized species of trans-Andean Rhamdia (Pisces: Siluriformes: Heptapteridae). Copeia, 103, 563–579. https://doi.org/10.1643/CI-14-145

Hubbs, C. L. (1936). Fishes of the Yucatan peninsula. In A. S. Pearse, E. P. Creaser, & F. G. Hall (Eds.), The cenotes of Yucatán: a zoological and hydrographic survey (pp. 157– 287). Washington D.C.: Carnegie Institution of Washington Publications.

Hubbs, C. L. (1938). Fishes from the caves of Yucatán. Publications of the Carnegie Institution of Washington, 491, 261–295.

Irwin, D. M., Kocher, T. D., & Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 32, 128–144. https://doi.org/10.1007/bf02515385

Johnson, N. A. (2008). Haldane’s rule: the heterogametic sex. Nature Education, 1, 1–6.

Jones, R., & Culver, D. C. (1989). Evidence for selection on sensory structures in a cave population of Gammarus minus (Amphipoda). Evolution, 43, 688–693. https://doi.org/10.2307/2409074

Keene, A., Yoshizawa, M., & McGaugh, S. E. (2015). Biology and evolution of the Mexican cavefish. Cambridge, Massachusetts: Academic Press. https://doi.org/10.1016/

C2014-0-01426-8

Kizirian, D., & Donnelly, M. A. (2004). The criterion of reciprocal

monophyly and classification of nested diversity at the species level. Molecular Phylogenetics and Evolution, 32, 1072–1076. https://doi.org/10.1016/j.ympev.2004.05.001

Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X. et al. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, 86, 6196–6200. https://doi.org/10.1073/pnas.86.16.6196

Langecker, T. G. (2000). The effects of continuous darkness on cave ecology and cavernicolous evolution. In H. Wilkens, D. C. Culver, & W. F. Humphreys (Eds.), Subterranean ecosystems (pp. 135–157). Amsterdam: Elsevier.

Lara, A., León, J. L. P., Rodríguez, R., Casane, D., Côté, G., Bernatchez, L. et al. (2010). DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts. Molecular Ecology Resources, 10, 421–430. https://doi.org/10.1111/j.1755-0998.2009.02785.x

Lowenstein, J. H., Osmundson, T. W., Becker, S., Hanner, R., & Stiassny, M. L. J. (2011). Incorporating DNA barcodes into a multi-year inventory of the fishes of the hyperdiverse Lower Congo River, with a multi-gene performance assessment of the genus Labeo as a case study. Mitochondrial DNA, 22, 52–70. https://doi.org/10.3109/19401736.2010.537748

Mees, G. F. (1974). The Auchenipteridae and Pimelodidae of Suriname (Pisces, Nematognathi). Zoologische Verhandelingen, 132, 1–246.

Miller, R. R. (1984). Rhamdia reddelli new species, the first blind pimelodid catfish from Middle America, with a key to the Mexican species. Transactions of the San Diego Society of Natural History, 20, 135–144.

Miller, R. R. (2005). Freshwater fishes of Mexico (with the collaboration of WL Minkley and SM Norris). Chicago: The University of Chicago Press.

Minton, M., & Droms, Y. (2019). Exploration of caves — vertical caving techniques. Chapter 49. In W. B. White, D. C. Culver, & T. Pipan (Eds.), Encyclopedia of caves (Third edition) (pp. 420–425). Cambridge, Massachusetts: Academic Press.

Møller, P. R., Knudsen, S. W., Schwarzhans, W., & Nielsen, J. G. (2016). A new classification of viviparous brotulas (Bythitidae) –with family status for Dinematichthyidae– based on molecular, morphological and fossil data. Molecular Phylogenetics and Evolution, 100, 391–408. https://doi.org/10.1016/j.ympev.2016.04.008

Mosier, D. (1984). Cave dwelling populations of Rhamdia (Pimelodidae). Association for Mexican Cave Studies Activities Newsletter, 14, 40–44.

Nicholas, G. (1962). Checklist of troglobitic organisms of Middle America. The American Midland Naturalist, 68, 165–188.

Nickum, J., Bart Jr, H. L., Bowser, P. R., Greer, I. E., Hubbs, C., Jenkins, J. A. et al. (2004). Guidelines for the use of fishes in research. Fisheries-Bethesda, 29, 26–26.

Ornelas-García, C. P., Domínguez-Domínguez, O., & Doadrio, I. (2008). Evolutionary history of the fish genus Astyanax Baird and Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. BMC Evolutionary Biology, 8, 340. https://dx.doi.org/10.1186%2F1471-2148-8-340

Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 16. https://doi.org/10.1186/1742-9994-7-16

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics, 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412

Perdices, A., Bermingham, E., Montilla, A., & Doadrio, I. (2002). Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. Molecular Phylogenetics and Evolution, 25, 172–189. https://doi.org/10.1016/ S1055-7903(02)00224-5

Pereira, L. H., Hanner, R., Foresti, F., & Oliveira, C. (2013). Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genetics, 14, 20. https://doi.org/10.1186/1471-2156-14-20

Pereira, L. H. G., Maia, G. M. G., Hanner, R., Foresti, F., & Oliveira, C. (2011). DNA barcodes discriminate freshwater fishes from the Paraíba do Sul River Basin, São Paulo, Brazil. Mitochondrial DNA, 22, 71–79. https://doi.org/10.31 09/19401736.2010.532213

Popescu, A., Huber, K. T., & Paradis, E. (2012). ape 3.0: New tools for distance-based phylogenetics and evolutionary analysis in R. Bioinformatics, 28, 1536–1537. https://doi.org/10.1093/bioinformatics/bts184

Porter, M. L., & Crandall, K. A. (2003). Lost along the way: the significance of evolution in reverse. Trends in Ecology and Evolution, 18, 541–547. https://doi.org/10.1016/ S0169-5347(03)00244-1

Poulson, T. L. (1963). Cave adaptation in amblyopsid fishes. American Midland Naturalist, 70, 257–290. https://doi.org/10.2307/2423056

Proudlove, G. S. (2006). Subterranean fishes of the world: an account of the subterranean (hypogean) fishes described up to 2003 with a bibliography 1541-2004. Moulis, France: International Society for Subterranean Biology.

QGIS Development Team. (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project.

Ratnasingham, S., & Hebert, P. D. N. (2007). bold: the Barcode of Life Data System (http://www.barcodinglife. org). Molecular Ecology Notes, 7, 355–364. https://dx.doi.org/10.1111%2Fj.1471-8286.2007.01678.x

Reddell, J. R. (1981). A review of the cavernicole fauna of Mexico, Guatemala, and Belize. Texas Memorial Museum, The University of Texas at Austin. No. 591 R4.

Rétaux, S., & Casane, D. (2013). Evolution of eye development in the darkness of caves: adaptation, drift, or both? EvoDevo, 4, 1–12. https://doi.org/10.1186/2041-9139-4-26

Ríos, N., Bouza, C., Gutiérrez, V., & García, G. (2017). Species complex delimitation and patterns of population structure at different geographic scales in Neotropical silver catfish (Rhamdia: Heptapteridae). Environmental Biology of Fishes, 100, 1047–1067. https://doi.org/10.1007/s10641-017-0622-1

Robertson, S. (1983). Zongolica Project 1983. Association for Mexican Cave Studies Activities Newsletter, 13, 36–41. Rohlf, F. J. (2015). The tps series of software. Hystrix, the Italian

Journal of Mammalogy, 26, 9–12. https://doi.org/10.4404/hystrix-26.1-11264

Romero, A., & Green, S. M. (2005). The end of regressive

evolution: examining and interpreting the evidence from cave fishes. Journal of Fish Biology, 67, 3–32. https://doi.org/10.1111/j.0022-1112.2005.00776.x

Romero, A., & Paulson, K. M. (2001). It’s a wonderful hypogean life: a guide to the troglomorphic fishes of the world. In A. Romero (Ed.), The biology of hypogean fishes (pp. 13–41). Dordrecht: Springer.

Romero, A., Singh, A., McKie, A., Manna, M., Baker, R., Paulson, K. M. et al. (2002). Replacement of the troglomorphic population of Rhamdia quelen (Pisces: Pimelodidae) by an epigean population of the same species in the Cumaca Cave, Trinidad, West Indies. Copeia, 2002, 938–942. https://doi. org/10.1643/0045-8511(2002)002[0938:ROTTPO]2.0.CO;2

Sabaj, M. H. (2020). Codes for natural history collections in ichthyology and herpetology. Copeia, 108, 593–669. https://doi.org/10.1643/ASIHCODONS2020

Salinas, N. R., & Little, D. P. (2014). 2matrix: A utility for indel coding and phylogenetic matrix concatenation1. Applications in Plant Sciences, 2, 1300083. https://dx.doi.org/10.3732%2Fapps.1300083

Sbordoni, V., Argano, R., & Vomero, V. (1986). Relazione biologica sulle spedizioni “Malpaso” 1981–82 e 1984. Notiziario del Circolo Speleologico Romano, Nouva Serie, 1, 73–88.

Schliep, K. P. (2011). Phangorn: phylogenetic analysis in R. Bioinformatics, 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706

Silfvergrip, A. M. C. (1996). A systematic revision of the Neotropical catfish genus Rhamdia (Teleostei, Pimelodidae) (PhD. Thesis). Stockholm University.

Soares, D., & Niemiller, M. L. (2020). Extreme adaptation in caves. The Anatomical Record, 303, 15–23. https://doi.org/10.1002/ar.24044

Sokal, R. R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationship. University of Kansas Science Bulletin, 28, 1409–1438.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood- based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446

Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57, 758–771. https://doi.org/10.1080/10635150802429642

Strecker, U., Hausdorf, B., & Wilkens, H. (2012). Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico. Molecular Phylogenetics and Evolution, 62, 62–70. https://doi.org/10.1016/j.ympev.2011.09.005

Usso, M. C., Santos, A. R. D., Gouveia, J. G., Frantine-Silva, W., Araya-Jaime, C., Oliveira, M. L. M. D. et al. (2019). Genetic and chromosomal differentiation of Rhamdia quelen (Siluriformes, Heptapteridae) revealed by repetitive molecular markers and DNA barcoding. Zebrafish, 16, 87– 97. https://doi.org/10.1089/zeb.2018.1576

Valdez-Moreno, M., Ivanova, N. V., Elías-Gutiérrez, M., Contreras-Balderas, S., & Hebert, P. D. N. (2009). Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes. Journal of Fish Biology, 74, 377–402. https://doi.org/10.1111/j.1095-8649.2008.02077.x

Venarsky, M. P., Huntsman, B. M., Huryn, A. D., Benstead, J. P., & Kuhajda, B. R. (2014). Quantitative food web analysis supports the energy-limitation hypothesis in cave stream ecosystems. Oecologia, 176, 859–869. https://doi. org/10.1007/s00442-014-3042-3

Walsh, S. J., & Chakrabarty, P. (2016). A new genus and species of blind sleeper (Teleostei: Eleotridae) from Oaxaca, Mexico: first obligate cave gobiiform in the Western Hemisphere. Copeia, 104, 506–517. https://doi.org/10.1643/CI-15-275

Ward, R. D. (2009). DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources, 9, 1077–1085. https://doi. org/10.1111/j.1755-0998.2009.02541.x

Weber, A., Allegrucci, G., & Sbordoni, V. (2003). Rhamdia laluchensis, a new species of troglobitic catfish (Siluriformes: Pimelodidae) from Chiapas, Mexico. Ichthyological Exploration of Freshwaters, 14, 273–280.

Weber, A., & Wilkens, H. (1998). Rhamdia macuspanensis: A Nnew Sspecies of troglobitic pimelodid catfish (Siluriformes; Pimelodidae) from a cave in Tabasco, Mexico. Copeia, 1998, 998–1004. https://doi.org/10.2307/1447347

Wiens, J. J., & Penkrot, T. A. (2002). Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology, 51, 69–91. https://doi.org/10.1080/106351502753475880

Wilkens, H. (1993). A new species of Rhamdia (Pisces: Pimelodidae) from a cave in the Sierra de Zongolica (Veracruz, México). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 90, 375–378.

Wilkens, H. (2001). Convergent adaptations to cave life in the Rhamdia laticauda catfish group (Pimelodidae, Teleostei). Environmental Biology of Fishes, 62, 251–261. https://doi. org/10.1023/A:1011897805681

Wilkens, H. (2016). Genetics and hybridization in surface and cave Astyanax (Teleostei): a comparison of regressive and constructive traits. Biological Journal of the Linnean Society, 118, 911–928. https://doi.org/10.1111/bij.12773

Wilkens, H., & Strecker, U. (2017). Evolution in the dark: Darwin’s loss without selection. Berlin: Springer. https://doi.org/10.1007/978-3-662-54512-6

Descargas

Publicado

2021-08-18

Número

Sección

TAXONOMÍA Y SISTEMÁTICA