Bacterias cultivables de la rizósfera del maíz: conservando el potencial de los recursos biotecnológicos mexicanos

Autores/as

  • Jesús Damián Cordero-Ramírez Universidad Autónoma de Occidente
  • Alejandro Miguel Figueroa-López Instituto Tecnológico de Sonora
  • Juan Carlos Martínez-Álvarez Instituto Politécnico Nacional
  • Melina López-Meyer Instituto Politécnico Nacional
  • Claudia Castro-Martínez Instituto Politécnico Nacional
  • Juan José Morales-Aguilar Instituto Politécnico Nacional
  • Ignacio Eduardo Maldonado-Mendoza Instituto Politécnico Nacional https://orcid.org/0000-0001-9952-1508

DOI:

https://doi.org/10.22201/ib.20078706e.2022.93.3561

Palabras clave:

Microbiota cultivable, Maíz, Poblaciones bacterianas, Colecciones microbianas

Resumen

La diversidad de la microbiota asociada a la rizósfera de cultivos en sistemas agrícolas ha sido pobremente estudiada en México y en todo el mundo. El objetivo de este trabajo fue identificar la diversidad de bacterias cultivables en campos de maíz. Se creó una colección de cepas de 11,520 aislados purificados a partir de la rizósfera de maíz. Se procedió a extraer el ADN genómico y secuenciar una región del 16S rADN de cada aislado. Las secuencias fueron analizadas y agrupadas en unidades operacionales taxonómicas (OTU). Esto permitió la agrupación de 7,077 cepas en 185 OTU pertenecientes a 19 géneros dentro de los phyla Firmicutes, Proteobacteria, Actinobacteria y
Bacteroidetes; siendo Firmicutes el phylum más rico, incluyendo 146 OTU y 6 géneros, con Bacillus como el género con más especies. Se identificó la comunidad núcleo de los suelos conteniendo 28 OTU de Firmicutes y 1 OTU de Proteobacteria. Se discute el papel que juegan las diferentes poblaciones bacterianas identificadas en la rizósfera del maíz, su potencial para ser empleadas con propósitos biotecnológicos y la importancia de la conservación de los recursos microbianos empleando colecciones bacterianas.

Biografía del autor/a

Ignacio Eduardo Maldonado-Mendoza, Instituto Politécnico Nacional

Departamento de Biotecnología Agrícola

Profesor Titular C.

Citas

Bressan, W., & Fontes-Figueiredo, J. E. (2007). Efficacy and dose–response relationship in biocontrol of Fusarium disease in maize by Streptomyces spp. European Journal of Plant Pathology, 120, 311–316. https://doi.org/10.1007/s10658-007-9220-y

Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

Cavaglieri, L. R., Andrés, L., Ibáñez, M., & Etcheverry, M. G. (2005). Rhizobacteria and their potential to control Fusarium verticillioides: effect of maize bacterisation and inoculum density. Antonie van Leeuwenhoek, 87, 179–187. https://doi.org/10.1007/s10482-004-3193-z

Cavaglieri, L., Passone, A., & Etcheverry, M. G. (2004). Screening procedures for selecting rhizobacteria with biocontrol effects upon Fusarium verticillioides growth and fumonisin B1 production. Research in Microbiology, 155, 747–754. https://doi.org/10.1016/j.resmic.2004.06.001

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y. et al. (2014). Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42, D633–D642. https://doi.org/10.1093/nar/gkt1244

Costa, R., Gomez, N., Peixoto, R. S., Rumjanek, N., Berg, G., Mendonca-Hagler, L. C. et al. (2006). Diversity and antagonistic potential of Pseudomonas spp. associated to the rhizosphere of maize grown in a subtropical organic farm. Soil Biology & Biochemistry, 38, 2434–2447. https//doi.org/10.1016/j.soilbio.2006.03.003

De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for cultivation of lactobacilli. Journal of Applied Bacteriology, 23, 130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

Douriet-Gámez, N. R., Maldonado-Mendoza, I. E., Ibarra-Laclette, E., Blom, J., & Calderón-Vazquez, C. L. (2018). Genomic analysis of Bacillus sp. strain B25, a biocontrol agent of maize pathogen Fusarium verticillioides. Current Microbiology, 75, 247–255. https://doi.org/10.1007/s00284-017-1372-1

Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects ¬ A review. Journal of Soil Science and Plant Nutrition, 17, 897–911. https://dx.doi.org/10.4067/S0718-95162017000400005

Figueroa-López, A. M., Cordero-Ramírez, J. D., Martínez-Álvarez, J. C., López-Meyer, M., Lizárraga-Sánchez, G. J., Félix-Gastélum, R. et al. (2016). Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springer Plus, 5, 330–342. https://doi.org/10.1186/s40064-016-1780-x

Figueroa-López, A. M., Cordero-Ramírez, J. D., Quiroz-Figueroa, F. R., & Maldonado-Mendoza, I. E. (2014). A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides. Journal of Basic Microbiology, 54, S125–S133. https://doi.org/10.1002/jobm.201200594

Figueroa-López, A. M., Leyva-Madrigal, K. Y., Cervantes-Gámez, R. G., Beltrán-Arredondo, L. I., Douriet-Gámez, N. R., Castro-Martínez, C. et al. (2017). Induction of Bacillus cereus chitinases as a response to lysates of Fusarium verticillioides. Romanian Biotechnological Letters ARS Docendi, 22, 12722–12731. https://e-repository.org/rbl/vol.22/iss.4/6.pdf

H. Ayuntamiento de Guasave. Gobierno del Estado de Sinaloa; Secretaría de Desarrollo Social, Medio Ambiente y Pesca; Subsecretaría de Desarrollo Urbano y Ecológico; Dirección de Recursos Naturales y Medio Ambiente. (1998). “La Uba” Cofradía de Tamazula, Guasave. Zona de Preservación Ecológica de Centro de Población. Guasave, Sinaloa.

Haas, D., Keel, C., & Reimmann, C. (2002). Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek, 81, 385–395. https://doi.org/10.1023/A:1020549019981

Hinton, D. M., & Bacon, C. W. (1995). Enterobacter cloacae is an endophytic symbiont of corn Mycophathologia, 129, 117–125. https://doi.org/10.1007/bf01103471

Ibarra-Galeana, J. A., Castro-Martínez, C., Fierro-Coronado, R. A., Armenta-Bojórquez, A. D., & Maldonado-Mendoza, I. E. (2017). Characterization of phosphate-solubilizing bacteria exhibiting the potential for growth promotion and phosphorus nutrition improvement in maize (Zea mays L.) in calcareous soils of Sinaloa, Mexico. Annals of Microbiology, 67, 801–811. https://doi.org/10.1007/s13213-017-1308-9

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096

Lennon, J. T., & Jones, S. E. (2011). Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology, 9, 119–130. https://doi.org/10.1038/nrmicro2504

Li, X., Rui, J., Xiong, J., Li, J., He, Z., Zhou, J. et al. (2014). Functional potential of soil microbial communities in the maize rhizosphere. Plos One, 9, e112609. https://doi.org/10.1371/journal.pone.0112609

Liu, X., Wang, Y., Liu, Y., Chen, H., & Hu, Y. (2020). Response of bacterial and fungal soil communities to chinese fir (Cunninghamia lanceolate) long-term monoculture plantations. Frontiers in Microbiology, 11, 181. https://doi.org/10.3389/fmicb.2020.00181

Lizárraga-Sánchez, G. J., Leyva-Madrigal, K. Y., Sánchez-Peña, P., Quiroz-Figueroa, F. R., & Maldonado-Mendoza, I. E. (2015). Bacillus cereus sensu lato strain B25 controls maize stalk and ear rot in Sinaloa, Mexico. Field Crops Research, 176, 11–21. https://doi.org/10.1016/j.fcr.2015.02.015

López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L. I. et al. (2007). Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant Microbe Interactions, 20, 207–217. https://doi.org/10.1094/MPMI-20-2-0207

Lu, J. J., Perng, C. L., Lee, S. Y., & Wan, C. C. (2000). Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. Journal of Clinical Microbiolology, 38, 2076–2080. https://doi.org/10.1128/JCM.38.6.2076-2080.2000

Lucon, C. M. M., Guzzo, S. D., De Jesus, C. O., Pascholati, S. F., & De Goes, A. (2010). Postharvest harpin or Bacillus thuringiensis treatments suppress citrus black spot in ‘Valencia’ oranges. Crop Protection, 29, 766–772. https://doi.org/10.1016/j.cropro.2010.02.018

Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097–1100. https://doi.org/10.1126/science.1203980

Morales-Ruiz, E., Priego-Rivera, R., Figueroa-López, A. M., Cazares-Álvarez, J. E., & Maldonado-Mendoza, I. E. (2021) Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against Fusarium verticillioides P03. FEMS Microbiology Letters, 368, fnaa218. https://doi.org/10.1093/femsle/fnaa218

Nagórska, K., Bikowski, M., & Obuchowski, M. (2007). Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polonica, 54, 495–508. https://doi.org/10.18388/ABP.2007_3224

Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular, 939, 1–19. Gov. Printing Office, Washington D.C., USA.

Omotayo, O. P., Igiehon, O. N., & Babalola, O. O. (2021). Metagenomic study of the community structure and functional potentials in maize rhizosphere microbiome: Elucidation of mechanisms behind the improvement in plants under normal and stress conditions. Sustainability, 13, 8079. https://doi.org/10.3390/su13148079

Pasarell, L., & McGinnis, M. R. (1992). Viability of fungal cultures maintained at -70 oC. Journal of Clinical Microbiology, 30, 1000-1004. https://doi.org/10.1128/jcm.30.4.1000-1004.1992

Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringer, S. G., Dangl, J. L. et al. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 110, 6548–6553. https://doi.org/10.1073/pnas.1302837110

Pereira, P., Ibáñez, F., Rosenblueth, M., Etcheverry, M., & Martínez-Romero, E. (2011). Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. International Scholarly Research Notices Ecology, 2011, 938546. https://doi.org/10.5402/2011/938546

Saleem, M., Hu, J., & Jousset, A. (2019). More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annual Review of Ecology, Evolution, and Systematics, 50, 145–168. https://doi.org/10.1146/annurev-ecolsys-110617-062605

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B. et al. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541. https://doi.org/10.1128/AEM.01541-09

Shi, T., Reeves, R. H., Gilichinsky, D. A., & Friedmann, E. I. (1997). Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microbial Ecology, 33, 169–179. https://doi.org/10.1007/s002489900019

SIAP (Servicio de Información Agroalimentaria y Pesquera). (2020). Disponible en: https://nube.siap.gob.mx/cierreagricola/

Sun, D. L., Jiang, X., Wu, Q. L., & Zhou, N. Y. (2013). Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Applied and Environmental Microbiology, 79, 5962–5969. https://doi.org/10.1128/AEM.01282-13

Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Tilak, K., & Reddy, B. (2006). Bacillus cereus and B. circulans – novel inoculants for crops. Current Science, 90, 642–644. www.jstor.org/stable/24089111

Trejo-Aguilar, D., Lara-Capistrán, L., Maldonado-Mendoza, I. E., Zulueta-Rodríguez, R., Sangabriel-Conde, W., et al. (2013) Loss of arbuscular mycorrhizal fungal diversity in trap cultures during long-term subculturing. IMA Fungus, 4, 161–167. https://doi.org/10.5598/imafungus.2013.04.02.01

Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38. http://dx.doi.org/10.1097/00010694-193401000-00003

Wang, C., Zhou, X., Guo, D., Zhao, J., Yan, L., Feng, G. et al. (2019). Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Annals of Microbiology, 69, 1461–1473. https://doi.org/10.1007/s13213-019-01529-9

Yang, Y., Wang, N., Guo, X., Zhang, Y., & Ye, B. (2017). Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. Plos One, 12, e0178425. https://doi.org/10.1371/journal.pone.0178425

Zhang, X., Zhang, R., Gao, J., Wang, X., Fan, F., Ma, X. et al. (2017). Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology and Biochemistry, 104, 208–217. https://doi.org/10.1016/j.soilbio.2016.10.023

Publicado

2022-09-30

Número

Sección

CONSERVACIÓN