Free amino acids in nectar: its composition and variability among bat-pollinated plants
DOI:
https://doi.org/10.22201/ib.20078706e.2021.92.3560Palabras clave:
Bat-pollinated plants, Free amino acid nectar types, Nectar chemistry, Nectar flavor, Pollination ecologyResumen
Regardless of the low concentrations at which amino acids are present in floral nectar of bat-pollinated plants, their role as nectar flavor providers and their influence on bats’ foraging decisions have been recognized. Nevertheless, variation in the free amino acids among bat-pollinated plant species has been less studied. The goal of this study
was to analyze the nectar free amino acids and to determine its variability among 8 bat-pollinated plant species from 5 families in a Tropical Dry Forest in Mexico. Nectar collections were made opportunistically depending on plants flowering season. We quantified 17 amino acids by HPLC. All 17 free amino acids were present in nectar from the 8 analyzed plant species. The concentration of 12 amino acids is explained by plant species by 19-58%. Analyses showed that Ceiba grandiflora (Malvaceae) was significantly different in asparagine content when compared to Bahuinia pauletia (Fabaceae) and Ceiba aesculifolia (Malvaceae), and in glutamic acid when compared to Ipomoea ampullacea (Convolvulaceae). We discuss the importance of free amino acids in nectar among plant species and their influence on bat pollination ecology.
Citas
Alm, J., Ohnmeiss, T. E., Lanza, J., & Vriesenga, L. (1990). Preference of cabbage white butterflies and honeybees for nectar that contains amino acids. Oecology, 84, 53–57. https://doi.org/10.1007/BF00665594
Ayala-Berdon, J., Rodriguez-Peña, N., García, L. C., Stoner, K. E., & Schondube, J. E. (2013). Sugar gustatory thresholds and sugar selection in two species of Neotropical nectar-eating bats. Comparative Biochemistry and Physiology A Molecular Integrative and Physiology, 164(2), 307–313. https:// doi.org/10.1016/j.cbpa.2012.10.019
Baker, H. G., & Baker, I. (1973a). Amino acids in nectar and their evolutionary significance. Nature, 241, 543–545. https://doi.org/10.1038/241543b0
Baker, H. G., & Baker, I. (1973b). Some anthecological aspects of the evolution of nectar-producing flowers, particularly amino acid production in nectar. En: Heywood, V. H., (Ed.) Taxonomy and Ecology. Academic Press, (pp. 243–264). London, New York.
Baker, H. G., & Baker I. (1975). Studies of nectar constitution and pollinator-plant coevolution. En: Gilbert LE, Raven PH (ed) Coevolution of animals and plants. University of Texas Press, (pp 100–140). Austin, London.
Baker, H. G., & Baker, I. (1977). Intraspecific constancy of floral nectar amino acid complements. Botanical Gazette, 138, 183–191.
Baker, H. G. (1978). Chemical aspects of the pollination biology of woody plants in the tropics. En: Tomlinson PB, Zimmei-Mann (ed) Tropical Trees as Living Systems, (pp 57–82). Cambridge.
Baker, H. G., & Baker, I. (1982). Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. En: Nitecki MH (ed) Biochemical aspects of evolutionary biology. Proceedings of the 4th annual spring systematics symposium. (pp 131–172). Chicago.
Baker, H. G., & Baker, I. (1983). A brief historical review of the chemistry of floral nectar. En: Bentley B, Elias T (ed) The biology of nectaries. (pp 126–152). New York.
Baker, H. G., & Baker, I. (1986). The occurrence and significance of amino acids in floral nectar. Plant Systematics and Evolution, 151, 175–186. https://doi.org/10.1007/BF02430273
Birch, G. G., & Kemp, S. E. (1989). Apparent specific volumes and tastes of amino acids. Chemical Senses, 14, 249–258. https://doi.org/10.1093/chemse/14.2.249
Bluthgen, N., & Fiedler, K. (2004), Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. Journal of Animal Ecology, 73, 155–166. https://doi.org/10.1111/j.1365-2656.2004.00789.x
Borghi, M., & Fernie, A. R. (2017). Floral metabolism of sugars and amino acids: implications for pollinators preferences and seed and fruit set. Plant Physiology, 175(4), 1510–1524. DOI: https://doi.org/10.1104/pp.17.01164
Brito, S. M. G. (2011). Taste perception in honeybees. Chemical Senses, 36(8), 675–692. https://doi.org/10.1093/chemse/bjr040
Carter, C., Shafir, S., Yehonatan, L., Palmer, R.G, & Thornburg, R. (2006). A novel role for proline in plant floral nectars. Naturwissenschaften, 93(2), 72–79. https://doi.org/10.1007/s00114-005-0062-1
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, N. J.: Lawrence Erlbaum Associates.
Dress, W. J., Newell, S., Nastase, A., & Ford, J. (1997). Analysis of amino acids in nectar from pitchers of Sarracenia purpurea (Sarraceniaceae). American Journal of Botany, 84(12), 1701–1706.
Galetto, L., & Bernardello, G. (2004). Floral Nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Annals of Botany (London), 94(2), 269–280. https://doi.org/10.1093/aob/mch137
Gardener, M. C., & Gillman, M. P. (2001). Analyzing variability in nectar amino acids: composition is less variable than concentration. Journal of Chemical Ecology, 27(12), 2545–2558. https://doi.org/10.1023/a:1013687701120.
Gardener, M. C., & Gillman, M. P. (2002). The taste of nectar, a neglected area of pollination ecology. Oikos, 98(3), 552–557. https://doi.org/10.1034/j.1600-0706.2002.980322.x
Gijbels P., Van den Ende, W., & Honnay, O. (2014). Landscape sacale variation in nectar amino acid and sugar composition in a Lepidoptera pollinated orchid species and its relation with fruit set. Journal of Ecology, 102, 136–144. https://doi.org/10.1111/1365-2745.12183
Goldberg, L. (2009). Patterns of nectar production composition and morphology of floral nectaries in Helicteres guzumifolia and Helicteres baruensis (Sterculiaceae): two sympatric species from the Costa Rican tropical dry forest. Revista de Biología Tropical, 57, 161–177.
Gottlinger, T., Schwerdtfeger, M., Tiedge, K., & Lohaus, G. (2019). What do nectarivorous bats like? Nectar composition in Bromeliaceae with special emphasis on bat-pollinated species. Frontiers in Plant Science, 10, 1–17. https://doi.org/10.3389/fpls.2019.00205
Gottsberger, G., Schrauwen, J., & Linskens, H. F. (1984). Amino acids and sugars in nectar, and their putative evolutionary significance. Plant Systematics and Evolution, 145(1-2), 55–77. https://doi.org/10.1007/BF00984031
Hainsworth, F. R., & Wolf, L. L. (1976). Nectar characteristics and food selection by hummingbirds. Oecologia, 25(2), 101–113. https://doi.org/10.1007/BF00368847
Hansen, K., Wacht, S., Seebauer, H., & Schnuch, M. (1998). New aspects of chemoreception in flies. Annals of the New York Academy of Sciences, 30 (855), 143–147. https://doi.org/10.1111/j.1749-6632.1998.tb10556.x
Herrera, J. (1989). Aminoácidos en el néctar de plantas del sur de España. Anales del Jardín Botanico de Madrid, 45(2), 475–482.
Herrera M., L. G. (1999). Preferences for different sugars in neotropical nectarivorous and frugivorous bats. Journal of Mammalogy, 80, 683–688. https://doi.org/10.2307/1383312
Herrera M., L. G., Keith, A. H., Mirón, M. L., Ramírez, P. N., Méndez, C. G., & Sánchez-Cordero, V. (2001). Sources of protein in two species of phytophagous bats in a seasonal dry forest: evidence from stable-isotope analysis. Journal of Mammalogy, 82(2), 352–361. https://doi.org/10.1644/1545-1542(2001)082<0352:SOPITS>2.0.CO;2
IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.
Ignell, R., Okawa, S., Englund, J., & Hill, S. R. (2010). Assessment of diet choice by the yellow fever mosquito Aedes aegypti. Physiological Entomology, 35(3), 274–286. https://doi.org/10.1111/j.1365-3032.2010.00740.x
Inouye, D. W., & Waller, G. D. (1984). Responses of honey bees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology, 65(2), 618–625.
Lalongo, C. (2016). Understanding the effect size and its measures. Biochemia Medica, 26(2), 150–163. https://doi.org/10.11613/BM.2016.015.
Lanza, J., & Krauss, B. R. (1984). Detection of amino acids in artificial nectars by two tropical ants, Leptothorax and Monomorium. Oecologia, 63(3), 423–425. https://doi.org/10.1007/BF00390676
Lott, E.J. (1993). Annotated checklist of the vascular flora of the Chamela Bay region Jalisco, Mexico. Occasional papers of the California Academy of Sciences, 148, 1–60.
Nepi, M., Soligo, C., Nocentini, D., Abate, M., Guarnieri, M., Cai, G., Bini, L., Puglia, M., Bianchi, L., & Pacini, E. (2012). Amino acids and protein profile in floral nectar: Much more than a simple reward. Flora, 207, 475–481. https://doi.org/10.1016/j.flora.2012.06.002
Nepi, M. (2014). Beyond nectar sweeteness: the hidden ecological role of non-protein amino acids in nectar. Journal of Ecology, 102, 108–115. https://doi.org/10.1111/1365-2745.12170
Nicolson, S. W., & Thornburg, R. W. (2007). Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E (ed), Nectaries and nectar. Springer, (pp 215–263). Dordrecht.
Petanidou, T., Van Laere, A., Ellis, W. N., & Smets, E. (2006). What shapes amino acid and sugar composition in mediterranean floral nectars? Oikos, 115(1), 155–169. https://doi.org/10.1111/j.2006.0030-1299.14487.x
Petanidou, T. (2007). Ecological and evolutionary aspects of floral nectars in Mediterranean habitats. In: SW Nicolson, M Nepi, & E Pacini (ed), Nectaries and nectar. Dordrecht: Springer, (pp 347–379). Germany.
Piechowski, D., Dotterl, S., & Gottsberger, G. (2010). Pollination biology and floral scent chemistry of the neotropical chiropterophilus Parkia pendula. Plant Biology, 12(1), 172–182. https://doi.org/10.1111/j.1438-8677.2009.00215.x.
Potter, C. F., & Bertin, R. I. (1988). Amino acids in artificial nectar: feeding preferences of the flesh fly Sarcophaga bullata. American Midland Naturalist, 120(1), 156–162. https://doi.org/10.2307/2425896
Rodríguez–Peña, N., Stoner, K. E., Ayala–Berdon, J., Flores–Ortiz, C. M., Duran, A., & Schondube, J. E. (2013). Nitrogen and amino acids in nectar modify food selection of nectarivorous bats. Journal of Animal Ecology, 82, 1106–1115. https://doi.org/10.1111/1365-2656.12069
Sánchez-Casas, N., & Alvarez, T. (2000). Palinofagia de los murciélagos del género Glossophaga (Mammalia: chiroptera) en México. Acta Zoologica Mexicana, 81, 23–62. Disponible en: <http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0065-17372000000300003&lng=es&nrm=iso>. ISSN 2448-8445.
Scogin, R. (1986). Reproductive phytochemistry of Bombacaceae: floral anthocyanins and nectar constituents. ALISO, 11(3), 377–385.
Shiraishi, A., & Kuwabara, M. (1970). The effects of amino acids on the labellar hair chemosensory cells of the fly. Journal of General Physiology, 56(6), 768–782. https://doi.org/10.1085/jgp.56.6.768
Shoonhoven, L. M., van Loon, J. A., & Dicke, M. (2005). Insect‐Plant Biology. Oxford University Press, (pp 440). Oxford.
Snyder, P., & Lawson, S. (1993). Evaluating results using corrected and uncorrected effect size estimates. The Journal of Experimental Education, 61(4), 334–349.
Statistica StatSoft Inc., Data Analysis Software System, version 7, 2004.
Stoner, K. E., Salazar, K. A. O., Fernández, R. C. R., & Quesada, M. (2003). Population dynamics, reproduction, and diet of the lesser long-nosed bat (Leptonycteris curasoae) in Jalisco, Mexico: implications for conservation. Biodiversity and Conservation, 12(2), 357–373. https://doi.org/10.1023/A:1021963819751
Teulier, L., Weber, J. M., Crevier, J., & Darveau, C. A. (2016). Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proceedings of the Royal Society B: Biological Sciences, doi: 10.1098/rspb.2016.0333.
Tiedge, K., & Lohaus, G. (2017). Nectar sugars and amino acids in day- and night- flowering Nicotiana species are more strongly shaped by pollinators´preferences than organic acids and inorganic ions. PLOS ONE, 12 (5), 2–25. • https://doi.org/10.1371/journal.pone.0176865
Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in sport Sciences, 1(21), 19–25.