Sexual dimorphism and geographic variation of the skull of the fishing bat Noctilio leporinus (Chiroptera: Noctilionidae) in Mexico

Autores/as

  • Sandra Milena Ospina-Garcés Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias. Universidad Nacional Autónoma de México http://orcid.org/0000-0002-0950-4390
  • Livia León-Paniagua UNAM (Universidad Nacional Autónoma de México) Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias. Ciudad Universitaria, Ciudad de México 04510. http://orcid.org/0000-0002-1748-0915

DOI:

https://doi.org/10.22201/ib.20078706e.2021.92.3518

Palabras clave:

Geometric morphometrics, Noctilionoidea, Sexual characters

Resumen

The fishing bat Noctilio leporinus Linnaeus, 1758, represents a complex of subspecies with a discontinuous lowland distribution in Central, South America and the Caribbean. Although Mexican populations are currently included in the subspecies N. l. mastivus, the morphological variation in these groups has been poorly studied and only the body size differences with other subspecies have been documented. In addition, sex differences in cranial morphology for this complex of subspecies have been identified previously. To determine whether there are geographic differences between 2 isolated Mexican populations of N. l. mastivus and quantify the cranial sexual dimorphism in this subspecies, we performed geometric morphometric analyses of 2 dimensional landmark configurations describing
cranial shapes. Our results support significant shape differences between the Pacific coast (west) and Gulf of Mexico-Yucatán Peninsula (east) populations, but no differences in cranial size were found. There were differences between sexes in the size and shape of the sagittal crest, in both populations, and these results suggest a continuous trend of development of this character in males, which imply functional differences in masticatory function between sexes. Morphological differences between populations could be related to genetic isolation and may be accentuated by differences in habitat structure between the dry (west) and humid (east) slopes of the Mexican mountains.

Biografía del autor/a

Sandra Milena Ospina-Garcés, Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias. Universidad Nacional Autónoma de México

Biología Evolutiva, estancia posdoctoral

Livia León-Paniagua, UNAM (Universidad Nacional Autónoma de México) Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias. Ciudad Universitaria, Ciudad de México 04510.

Biología Evolutiva, Titular C

Citas

Adams, D. C., Collyer, M. L., & Kaliontzopoulou, A. (2019). Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r–project.org/package=geomorph

Altenbach, J. S. (1989). Prey capture by the fishing bats Noctilio leporinus and Myotis vivesi. Journal of Mammalogy, 70, 421–424. https://doi.org/10.2307/1381532

Arteaga, M. C., McCormack, J. E., Eguiarte, L. E., & Medellín, R. A. (2011). Genetic admixture in multidimensional environmental space: asymmetrical niche similarity promotes gene flow in armadillos (Dasypus novemcinctus): niche similarity promotes genetic admixture. Evolution, 65, 2470–2480. https://doi.org/10.1111/j.1558–5646.2011.01329.x

Bordignon, M. O. (2006). Diet of the fishing bat Noctilio leporinus (Linnaeus)(Mammalia, Chiroptera) in a mangrove area of southern Brazil. Revista Brasileira de Zoologia, 23, 256-260. http://dx.doi.org/10.1590/S0101-81752006000100019

Brooke, A. P. (1997). Social Organization and Foraging Behaviour of the Fishing Bat, Noctilio leporinus (Chiroptera:Noctilionidae). Ethology, 103, 421–436. https://doi.org/10.1111/j.1439–0310.1997.tb00157.x

Collyer, M. L., & Adams, D. C. (2018). RRPP: An r package for fitting linear models to high–dimensional data using residual randomization. Methods in Ecology and Evolution, 9, 1772–1779. https://doi.org/10.1111/2041–210X.13029

Davis, W. B. (1970). The large fruit bats (genus Artibeus) of Middle America, with a review of the Artibeus jamaicensis complex. Journal of Mammalogy, 51, 105–122.

Davis, W. B. (1973). Geographic variation in the fishing bat, Noctilio leporinus. Journal of Mammalogy, 54, 862–874. https://doi.org/10.2307/1379081

Dumont, E. R., Dávalos, L. M., Goldberg, A., Santana, S. E., Rex, K., & Voigt, C. C. (2011). Morphological innovation, diversification and invasion of a new adaptive zone. Proceedings of the Royal Society of London B: Biological Sciences, 279, 1797–1805. https://doi.org/10.1098/rspb.2011.2005

Dumont, E. R., & Herrel, A. (2003). The effects of gape angle and bite point on bite force in bats. Journal of Experimental Biology, 206, 2117–2123. https://doi.org/10.1242/jeb.00375

Dumont, E. R., Herrel, A., Medellín, R. A., Vargas‐Contreras, J. A., & Santana, S. E. (2009). Built to bite: cranial design and function in the wrinkle–faced bat. Journal of Zoology, 279, 329–337. https://doi.org/10.1111/j.1469–7998.2009.00618.x

Engle, V. D. (2011). Estimating the provision of ecosystem services by Gulf of Mexico Coastal Wetlands. Wetlands, 31, 179–193. https://doi.org/10.1007/s13157–010–0132–9

Freeman, P. W. (1988). Frugivorous and animalivorous bats (Microchiroptera): dental and cranial adaptations. Biological Journal of the Linnean Society, 33, 249–272. https://doi.org/10.1111/j.1095–8312.1988.tb00811.x

Goldman, E. A. (1915). Five new mammals from Mexico and Arizona. Proceedings of the Biological Society of Washington, 28, 133–137.

Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian journal of mammalogy, 24, 103–109. http://doi:10.4404/hystrix-24.1-6292

Gutiérrez-García, T.A., & Vázquez-Domínguez, E. (2013). Consensus between genes and

stones in the biogeographic and evolutionary history of Central America. Quaternary

Research (United States), 79, 311–324. http://dx.doi.org/10.1016/j.yqres.2012.12.007

Hall, E., & Kelson, K. R. (1959). The mammals of North America. New York: Ronald Press.

Hernández-Canchola, G., & León-Paniagua, L. (2017). Genetic and ecological processes promoting early diversification in the lowland Mesoamerican bat Sturnira parvidens (Chiroptera: Phyllostomidae). Molecular Phylogenetics and Evolution, 114, 334–345. https://doi.org/10.1016/j.ympev.2017.06.015

Herrel, A., De Smet, A., Aguirre, L. F., & Aerts, P. (2008). Morphological and mechanical determinants of bite force in bats: Do muscles matter? Journal of Experimental Biology, 211, 86–91. https://doi:10.1242/jeb.012211

Herring, S. W., & Herring, S. E. (1974). The superficial masseter and gape in mammals. The American Naturalist, 108, 561–576. https://doi.org/10.1086/282934

Hood, C. S., & Jones, J. K. (1984). Noctilio leporinus. Mammalian Species, 216, 1–7. https://doi.org/10.2307/3503809

Kalko, E. K. V., Schnitzler, H. U., Kaipf, I., & Grinnell, A. D. (1998). Echolocation and foraging behavior of the lesser bulldog bat Noctilio albiventris: Preadaptations for piscivory? Behavioral Ecology and Sociobiology, 42, 305–319. https://doi.org/10.1007/s002650050443

Lewis-Oritt, N., Van Den Bussche, R. A., & Baker, R. J. (2001). Molecular Evidence for Evolution of Piscivory in Noctilio (Chiroptera: Noctilionidae). Journal of Mammalogy, 82, 748–759. https://doi.org/10.1644/15451542(2001)082<0748:MEFEOP>2.0.CO;2

Lim, B. K. (1997). Morphometric differentiation and species status of the Allopatric fruit‐eating bats Artibeus Jamaicensis and A. Planirostris in Venezuela. Studies on Neotropical Fauna and Environment, 32, 65–71. https://doi.org/10.1080/01650521.1997.9709606

López-Wilchis, R., Guevara-Chumacero, L. M., Pérez, N. Á., Juste, J., Ibáñez, C., & Sosa, I. B. D. (2012). Taxonomic status assessment of the Mexican populations of funnel–eared bats, genus Natalus (Chiroptera: Natalidae). Acta Chiropterologica, 14, 305–316. https://doi.org/info:doi/10.3161/150811012X661639

Maass, J. M., Balvanera, P., Castillo, A., Daily, G. C., Mooney, H. A., Ehrlich, P. et al. (2005). Ecosystem services of tropical dry forests. Ecology and Society, 10, 17. https://www.jstor.org/stable/10.2307/26267750

Marchán-Rivadeneira, M. R., Phillips, C. J., Strauss, R. E., Antonio-Guerrero, J., Mancina, C. A., & Baker, R. J. (2010). Cranial differentiation of fruit-eating bats (genus Artibeus) based on size-standardized data. Acta Chiropterologica, 12, 143–154. https://doi.org/10.3161/150811010X504644

McCracken, G. F., & Wilkinson, G. S. (2000). Eight-bat mating systems. In E. G. Crichton, & P. H. Krutzsch (Eds.), Reproductive biology of bats (pp. 321–362). San Diego: Academic Press. https://doi.org/10.1016/B978–012195670–7/50009–6

Monrroy, G. A., Reyes‐Amaya, N., & Jerez, A. (2020). Postnatal cranial ontogeny of the Greater Bulldog Bat Noctilio leporinus (Chiroptera: Noctilionidae). Acta Zoológica, 101, 412–430. https://doi.org/10.1111/azo.12309

Mulcahy, D. G., Morrill, B. H., & Mendelson III, J. R. (2006). Historical biogeography of lowland species of toads (Bufo) across the Trans‐Mexican Neovolcanic Belt and the Isthmus of Tehuantepec. Journal of Biogeography, 33, 1889–1904. https://doi.org/10.1111/j.1365–2699.2006.01546.x

Nogueira, M. R., Peracchi, A. L., & Monteiro, L. R. (2009). Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Functional Ecology, 23, 715–723. https://doi.org/10.1111/j.1365–2435.2009.01549.x

Ospina-Garcés, S. M., & De Luna, E. (2017). Phylogenetic analysis of landmark data and the morphological evolution of cranial shape and diets in species of Myotis (Chiroptera: Vespertilionidae). Zoomorphology, 136, 251–265. https://doi.org/10.1007/s00435–017–0345–z

Ospina-Garcés, S. M., De Luna, E., Herrera, M., L. G., & Flores-Martínez, J. J. (2016). Cranial shape and diet variation in Myotis species (Chiroptera: Vespertilionidae): testing the relationship between form and function. Acta Chiropterologica, 18, 163–180. https://doi.org/10.3161/15081109ACC2016.18.1.007

Pavan, A. C., Martins, F. M., & Morgante, J. S. (2013). Evolutionary history of bulldog bats (genus Noctilio): Recent diversification and the role of the Caribbean in Neotropical biogeography. Biological Journal of the Linnean Society, 108, 210–224. https://doi.org/10.1111/j.1095–8312.2012.01979.x

R Core Team. (2017). R: a language and environment for statistical computing (Versión 3.3.3) [Computer software]. https://stat.ethz.ch/pipermail/r–announce/2017/000611.html

Reyes‐Amaya, N., Jerez, A., & Flores, D. (2017). Morphology and postnatal development of lower hindlimbs in Desmodus rotundus (Chiroptera: Phyllostomidae): a comparative study. The Anatomical Record, 300, 2150–2165. https://doi.org/10.1002/ar.23646

Ripley, B., Venables, B., Hornik, K., Gebhardt, A., & Firth, D. (2019). MASS package | R Documentation (Versión 7.3) [Computer software]. https://www.rdocumentation.org/packages/MASS/versions/7.3–47

Rohlf, F. J. (2017). Tpsdig, version 2.3, tpsUtil version 1.74. Department pf Ecology and Evolution, Stony Brook.

Rojas, D., Warsi, O. M., & Dávalos, L. M. (2016). Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant neotropical diversity. Systematic Biology, 65, 432–448. https://doi.org/10.1093/sysbio/syw011

Sabaté, D. M., & Paniagua, L. L. (2004). Estudio comparativo de los patrones de riqueza altitudinal de especies en mastofaunas de áreas montañosas mexicanas. Revista Mexicana de Mastozoología (Nueva Época), 6, 60–82.

Santana, S. E., Dumont, E. R., & Davis, J. L. (2010). Mechanics of bite force production and its relationship to diet in bats. Functional Ecology, 24, 776–784.

Santana, S. E., & Cheung, E. (2016). Go big or go fish: morphological specializations in carnivorous bats. Proceedings of the Royal Society B: Biological Sciences, 283, 20160615. https://doi.org/10.1098/rspb.2016.0615

Schlager, S. (2019). Package morpho. Academic Press. https://doi.org/10.1016/B978–0–12–810493–4.00011–0

Springer, M. S., Burk-Herrick, A., Meredith, R., Eizirik, E., Teeling, E., O’Brien, S. J. et al. (2007). The adequacy of morphology for reconstructing the early history of placental mammals. Systematic Biology, 56, 673–684. https://doi.org/10.1080/10635150701491149

Storz, J. F., Balasingh, J., Bhat, H. R., Nathan, P. T., Doss, D. P. S., Prakash, A. A. et al. (2008). Clinal variation in body size and sexual dimorphism in an Indian fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae). Biological Journal of the Linnean Society, 72, 17–31. https://doi.org/10.1111/j.1095–8312.2001.tb01298.x

Voigt, C. C. (2014). Chapter 16-sexual selection in neotropical bats. In R. H. Macedo, & G. Machado (Eds.), Sexual selection: perspectives and models from the Neotropics (pp. 409–432). Oxford: Academic Press. https://doi.org/10.1016/B978–0–12–416028–6.00016–5

Wilkinson, G. S., & McCracken, G. F. (2003). Bats and balls: sexual selection and sperm competition in the Chiroptera. In T. H. Kunz, & B. Fenton (Eds.), Bat ecology (pp. 128–155). Chicago: University of Chicago Press.

Willig, M. R., & Hollander, R. R. (1995). Secondary sexual dimorphism and phylogenetic constraints in bats: a multivariate approach. Journal of Mammalogy, 76, 981–992. https://doi.org/10.2307/1382592

Yom-Tov, Y., & Geffen, E. (2006). Geographic variation in body size: the effects of ambient temperature and precipitation. Oecologia, 148, 213–218. https://10.1007/s00442-006-0364-9

Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: a primer. Amsterdam: Academic Press.

Archivos adicionales

Publicado

2021-04-05

Número

Sección

TAXONOMÍA Y SISTEMÁTICA