Resiliencia ecológica del bosque tropical seco: recuperación de su estructura, composición y diversidad en Tehuantepec, Oaxaca

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2021.92.3422

Palabras clave:

Abandono agrícola, Cambio global, Cronosecuencia, Restauración ecológica pasiva, Sucesión secundaria

Resumen

En este estudio se analizan los patrones de recuperación de la estructura, la composición y la diversidad de plantas en bosques secundarios de bosque tropical seco (BTS) en paisajes agrícolas de Tehuantepec, Oaxaca. Para ello, se estableció una cronosecuencia con 19 parcelas (incluyendo una de bosque maduro) de 20 m × 20 m con una edad conocida de abandono de entre 3 y 50 años. En cada parcela se censaron las plantas leñosas con diámetro a la altura del pecho mayor o igual a 5 cm; se identificaron las especies y se registró su diámetro y altura. Los resultados indican que tras el abandono de la actividad agrícola, los bosques se regeneran naturalmente, lo cual debe considerarse en las estrategias para la conservación de los BTS frente al cambio global. Asimismo, la composición de especies presente en los bosques secundarios puede ayudar a guiar las estrategias de restauración ecológica activa que aceleren el proceso de sucesión ecológica. La resiliencia ecológica del BTS en áreas de abandono agrícola está dada por la recuperación de atributos más que por la resistencia al disturbio agrícola.

Biografía del autor/a

Francisco Guerra-Martínez, Universidad Nacional Autónoma de México.

Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México. *

Departamento de Geografía Física, Instituto de Geografía, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México

Arturo García-Romero, Universidad Nacional Autónoma de México.

Departamento de Geografía Física, Instituto de Geografía, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México.

Miguel Ángel Martínez-Morales, El Colegio de la Frontera Sur.

Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, 29290, San Cristóbal de las Casas, Chiapas, México.

José López-García, Universidad Nacional Autónoma de México.

Departamento de Geografía Física, Instituto de Geografía, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México.

Citas

Arroyo-Rodríguez, V., Melo, F. P. L., Martínez-Ramos, M., Bongers, F., Chazdon, R. L., Meave, J. A. et al. (2017). Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 92, 326–340. https://doi.org/10.1111/brv.12231

Avella, M. A., García G. N., Fajardo-Gutiérrez, F. y González-Melo, A. (2019). Patrones de sucesión secundaria en un bosque seco tropical interandino de Colombia: implicaciones para la restauración ecológica. Caldasia, 41, 12–27. https://doi.org/10.15446/caldasia.v41n1.65859

Beltrán-Rodríguez, L. A., Valdez-Hernández, J. I., Luna-Cavazos, M., Romero-Manzanares, A., Pineda-Herrera, E., Maldonado-Almanza, B. et al. (2018). Estructura y diversidad arbórea de bosques tropicales caducifolios secundarios en la Reserva de la Biosfera Sierra de Huautla, Morelos. Revista Mexicana de Biodiversidad, 89, 108–122. https://doi.org/10.22201/ib.20078706e.2018.1.2004

Bullock, S. H. (1995). Plant reproduction in neotropical dry forests. En S. H. Bullock, H. A. Mooney y E. Medina (Eds.), Seasonally Dry Tropical Forests: (pp. 277–303). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511753398.011

Chazdon, R. L. (2014). Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation. Yokohama, Japan: University of Chicago Press. Retrieved from https://books.google.com.mx/books?id=buJcngEACAAJ

Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., Zambrano, A. M. A., Aide, T. M. et al. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2, e1501639–e1501639. https://doi.org/10.1126/sciadv.1501639

Chazdon, R. L., Harvey, C. A., Martínez-Ramos, M., Balvanera, P., Schondube, J. E., Stoner, K. E. et al. (2011). Seasonally Dry Tropical Forest Biodiversity and Conservation Value in Agricultural Landscapes of Mesoamerica. En R. Dirzo, H. S. Young, H. A. Mooney y G. Ceballos (Eds.), Seasonally dry tropical forests: ecology and conservation (pp. 195–219). Washington, DC: Island Press. https://doi.org/10.5822/978-1-61091-021-7_12

Chazdon, R. L., Letcher, S. G., van Breugel, M., Martínez-Ramos, M., Bongers, F. y Finegan, B. (2007). Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 273–289. https://doi.org/10.1098/rstb.2006.1990

Chazdon, R. L., Peres, C. A., Dent, D., Sheil, D., Lugo, A. E., Lamb, D. et al. (2009). The potential for species conservation in tropical secondary forests. Conservation Biology, 23, 1406–1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x

Conabio. (2016). EncicloVida. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Recuperado el 07 octubre, 2019 de: http://www.enciclovida.mx

Derroire, G. (2016). Secondary Succession in Tropical Dry Forests.

Drivers and Mechanisms of Forest Regeneration. Bangor University.

Derroire, G., Balvanera, P., Castellanos-Castro, C., Decocq, G., Kennard, D. K., Lebrija-Trejos, E. et al. (2016). Resilience of tropical dry forests - a meta-analysis of changes in species diversity and composition during secondary succession. Oikos, (March), 1–12. https://doi.org/10.1111/oik.03229

Dupuy, J. M. J., Hernández-Stefanoni, J. L., Hernández-Juárez, R. A., Tetetla-Rangel, E., López-Martínez, J. O., Leyequién-Abarca, E. et al. (2012). Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica, 44, 1–12. https://doi.org/10.1111/j.1744-7429.2011.00783.x

FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). (2015). Global Forest Resources Assessment 2015. Desk reference. Desk Reference. https://doi.org/10.1002/2014GB005021

García, E. (2004). Modificaciónes al sistema de clasificación climática de Köppen. México, D. F.: Instituto de Geografía, Universidad Nacional Autónoma de México.

Guerra‐Martínez, F., García‐Romero, A., Cruz‐Mendoza, A., y Osorio‐Olvera, L. (2019). Regional analysis of indirect factors affecting the recovery, degradation and deforestation in the tropical dry forests of Oaxaca, Mexico. Singapore Journal of Tropical Geography, 40, 387–409. https://doi.org/10.1111/sjtg.12281

Gunderson, L. H. (2000). Ecological Resilience—In Theory and Application. Annual Review of Ecology and Systematics, 31, 425–439. https://doi.org/10.1146/annurev.ecolsys.31.1.425

Hodgson, D., McDonald, J. L. y Hosken, D. J. (2015). What do you mean, “resilient”? Trends in Ecology and Evolution, 30, 503–506. https://doi.org/10.1016/j.tree.2015.06.010

Huisman, J., Olff, H., y Fresco, L. F. M. (1993). A hierarchical set of models for species response analysis. Journal of Vegetation Science, 4(1), 37–46. https://doi.org/10.2307/3235732

INEGI (Instituto Nacional de Estadística y Geografía). (2010). Compendio de información geográfica municipal 2010, Santo Domingo Tehuantepec, Oaxaca. Aguascalientes, Ags., México.

INEGI (Instituto Nacional de Estadística y Geografía). (2017). Uso del suelo y vegetación, escala 1:250000, serie VI (continuo nacional). Aguascalientes, México.

Jansen, F. y Oksanen, J. (2013). How to model species responses along ecological gradients - Huisman-Olff-Fresco models revisited. Journal of Vegetation Science, 24, 1108–1117. https://doi.org/10.1111/jvs.12050

Johnson, E. A. y Miyanishi, K. (2008). Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419–431. https://doi.org/10.1111/j.1461-0248.2008.01173.x

Kaufman, L. H. (1982). Stream aufwuchs accumulation: Disturbance frequency and stress resistance and resilience. Oecologia, 52, 57–63. https://doi.org/10.1007/BF00349012

Kennard, D. K. (2002). Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. Journal of Tropical Ecology, 18, 53–66. https://doi.org/10.1017/S0266467402002031

Kennard, D. K., Gould, K., Putz, F. E., Fredericksen, T. S. y Morales, F. (2002). Effect of disturbance intensity on regeneration mechanisms in a tropical dry forest. Forest Ecology and Management, 162, 197–208. https://doi.org/10.1016/S0378-1127(01)00506-0

Lebrija-Trejos, E., Bongers, F., Pérez-García, E. A. y Meave, J. A. (2008). Successional Change and Resilience of a Very Dry Tropical Deciduous Forest Following Shifting Agriculture. Biotropica, 40, 422–431. https://doi.org/10.1111/j.1744-7429.2008.00398.x

Lebrija-Trejos, E., Eduardo, A. P., Meave, J. A., Poorter, L. y Bongers, F. (2011). Environmental changes during secondary succession in a tropical dry forest in Mexico. Journal of Tropical Ecology, 27, 477–489. https://doi.org/10.1017/S0266467411000253

Lebrija-Trejos, E., Meave, J. A., Poorter, L., Pérez-garcía, E. A. y Bongers, F. (2010). Pathways , mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 12, 267–275. https://doi.org/10.1016/j.ppees.2010.09.002

Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Bongers, F. y Poorter, L. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91, 386–398. https://doi.org/10.1890/08-1449.1

Lloret, F., Keeling, E. G. y Sala, A. (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120, 1909–1920. https://doi.org/10.1111/j.1600-0706.2011.19372.x

Lomelí Jiménez, A. J., Pérez-Salicrup, D. R., Figueroa Rangel, B. L., Mendoza-Cantú, M. E., Cuevas Guzmán, R., Andresen, E. et al. (2017). Are changes in remotely sensed canopy cover associated to changes in vegetation structure, diversity, and composition in recovered tropical shrublands? Plant Ecology, 218, 1021–1033. https://doi.org/10.1007/s11258-017-0750-x

Maass, M. y Burgos, A. (2011). Water Dynamics at the Ecosystem Level in Seasonally Dry Tropical Forests. En R. Dirzo, H. S. Young, H. A. Mooney y G. Ceballos (Eds.), Seasonally dry tropical forests: ecology and conservation (pp. 141–156). Washington, USA: Island Press. https://doi.org/10.5822/978-1-61091-021-7_9

MacGillivray, C. W. y Grime, J. P. (1995). Testing Predictions of the Resistance and Resilience of Vegetation Subjected to Extreme Events. Functional Ecology, 9, 640. https://doi.org/10.2307/2390156

Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S. et al. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33, 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x

Mooney, H. A. (2011). Synthesis and Promising Lines of Research on Seasonally Dry Tropical Forests. En R. Dirzo, H. S. Young, H. A. Mooney y G. Ceballos (Eds.), Seasonally dry tropical forests: ecology and conservation (pp. 301–306). Washington, USA: Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-021-7_17

Mooney, H. A., Bullock, S. H., y Medina, E. (1995). Introduction. In S. H. Bullock, H. A. Mooney, y E. Medina (Eds.), Seasonally Dry Tropical Forests (pp. 1–8). Cambridge, UK: Cambridge University Press.

Murphy, P. G. y Lugo, A. E. (1986). Ecology of Tropical Dry Forest. Annual Review of Ecology and Systematics, 17, 67–88. https://doi.org/10.1146/annurev.es.17.110186.000435

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D. et al. (2019). vegan: Community Ecology Package. https://cran.r-project.org/package=vegan

Osorio-Olvera, L., Barve, V., Barve, N., Soberón, J. y Falconi, M. (2018). ntbox: From getting biodiversity data to evaluating species distribution models in a friendly GUI environment. R package version 0.2.5.4. Recuperado el 25 noviembre, 2019 de: https://github.com/luismurao

Pérez-Báez, G., Cata, V., Riestenberg, K., López-Cartas, R., López-López, R. G., Morales-Carranza, G. et al. (2016). Guie’ gui’xhi stinu guidxi riale bi. Plantas representativas de la ventosa, Oaxaca. Smithsonian Institution. Recuperado el 25 noviembre, 2019 de: www.naturalhistory.si.edu/neho/laventosa

Pérez-García, E. A. y Meave, J. A. (2005). Heterogeneity of xerophytic vegetation of limestone outcrops in a tropical deciduous forest region in southern México. Plant Ecology, 175, 147–163. https://doi.org/10.1007/s11258-005-4841-8

Poorter, L., Rozendaal, D. M. A., Bongers, F., de Almeida-Cortez, J. S., Almeyda Zambrano, A. M., Álvarez, F. S. et al. (2019). Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 3. https://doi.org/10.1038/s41559-019-0882-6

Powers, J. S., Becknell, J. M., Irving, J. y Pérez-Aviles, D. (2009). Diversity and structure of regenerating tropical dry forests in Costa Rica: Geographic patterns and environmental drivers. Forest Ecology and Management, 258, 959–970. https://doi.org/10.1016/j.foreco.2008.10.036

Quesada, M., Álvarez-Añorve, M., Ávila-Cabadilla, L., Castillo, A., Lopezaraiza-Mikel, M., Martén-Rodríguez, S. et al. (2013). Tropical Dry Forest Ecological Succession in Mexico: Synthesis of a Long-Term Study. En A. Sanchez-Azofeifa, J. S. Powers, G. W. Fernandes, y M. Quesada (Eds.), Tropical Dry Forests in the Americas: Ecology, conservation and management (pp. 17–33). Boca Raton, FL: CRC Press. Taylor y Francis.

R Core Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria. https://www.r-project.org/

Rivera, L. W. y Aide, T. M. (1998). Forest recovery in the karst region of Puerto Rico. Forest Ecology and Management, 108, 63–75. https://doi.org/10.1016/S0378-1127(97)00349-6

Robertson, T., Döring, M., Guralnick, R., Bloom, D., Wieczorek, J., Braak, K. et al. (2014). The GBIF integrated publishing toolkit: Facilitating the efficient publishing of biodiversity data on the internet. PLoS ONE, 9. https://doi.org/10.1371/journal.pone.0102623

Rozendaal, D. M. A., Bongers, F., Aide, T. M., Alvarez-Dávila, E., Ascarrunz, N., Balvanera, P. et al. (2019). Biodiversity recovery of Neotropical secondary forests. Science Advances, 5, eaau3114. https://doi.org/10.1126/sciadv.aau3114

Ruiz, J., Fandino, M. C. y Chazdon, R. L. (2005). Vegetation Structure, Composition, and Species Richness Across a 56-year Chronosequence of Dry Tropical Forest on Providencia Island, Colombia1. Biotropica, 37, 520–530. https://doi.org/10.1111/j.1744-7429.2005.00070.x

Rykiel, J. E. J. (1985). Towards a definition of ecological disturbance. Australian Journal of Ecology, 10, 361–365. https://doi.org/10.1111/j.1442-9993.1985.tb00897.x

Salas-Morales, S. H., González, E. J. y Meave, J. A. (2018). Canopy height variation and environmental heterogeneity in the tropical dry forests of coastal Oaxaca, Mexico. Biotropica, 50, 26–38. https://doi.org/10.1111/btp.12491

Salas-Morales, S. H., Meave, J. A. y Trejo, I. (2015). The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico. International Journal of Biometeorology, 59, 1861–1874. https://doi.org/10.1007/s00484-015-0993-y

Sánchez-Azofeifa, G. A. y Portillo-Quintero, C. (2011). Extent and Drivers of Change of Neotropical Seasonally Dry Tropical Forests. En R. Dirzo, H. S. Young, H. A. Mooney, y G. Ceballos (Eds.), Seasonally dry tropical forests: ecology and conservation (pp. 45–57). Washington, USA: Island Press. https://doi.org/10.5822/978-1-61091-021-7

Sánchez-Azofeifa, G. A., Quesada, M., Rodríguez, J. P., Nassar, J. M., Stoner, K. E., Castillo, A. et al. (2005). Research priorities for neotropical dry forests. Biotropica, 37, 477–485. https://doi.org/10.1111/j.1744-7429.2005.00066.x

Silver, W. L., Ostertag, R. y Lugo, A. E. (2000). The potential for carbon sequestration through reforestationof abandoned tropical agricultural and pasture lands. Restoration Ecology, 8, 394–407. https://doi.org/10.1046/j.1526-100X.2000.80054.x

Smithsonian Institution. (2019). Flowering plants and ferns La Ventosa Ethnobotany Botany. Recuperado el 30 julio, 2019 de: https://www.si.edu/collection/search?edan_q=*:*yedan_fq[]=set_name:%22La+Ventosa+Ethnobotany%22

Torres-Colín, R., Torres-Colín, L., Dávila-Aranda, P. y Villaseñor, J. L. (1997). XVI. Flora of the district of Tehuantepec, Oaxaca. Mexico florist listings. Instituto de Biología, Universidad Nacional Autónoma de México.

Vesk, P. A. y Westoby, M. (2004). Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology, 92, 310–320. https://doi.org/10.1111/j.0022-0477.2004.00871.x

Vieira, D. L. M. y Scariot, A. (2006). Principles of natural regeneration of Tropical Dry Forests for regeneration. Restoration Ecology, 14, 11–20. https://doi.org/10.1111/j.1526-100X.2006.00100.x

Wright, S. J. y Muller-Landau, H. C. (2006). The Future of Tropical Forest Species. Biotropica, 38, 287–301. https://doi.org/10.1111/j.1744-7429.2006.00154.x

Descargas

Publicado

2021-08-18

Número

Sección

ECOLOGÍA