A single genealogical lineage from the Sonoran Desert and the Mexican Pacific Coast explains the haplotype distribution of Trichobaris compacta

Autores/as

  • Marisol De la Mora-Curiel Universidad Nacional Autónoma de México
  • Daniel Piñero Universidad Nacional Autónoma de México
  • Ken Oyama Universidad Nacional Autónoma de México
  • Juan Núñez-Farfán Universidad Nacional Autónoma de México http://orcid.org/0000-0001-5829-8338

DOI:

https://doi.org/10.22201/ib.20078706e.2021.92.3370

Palabras clave:

Datura, Phylogeography, Plant-herbivore interaction, Trichobaris compacta, Weevil, COI

Resumen

The weevil Trichobaris compacta occurs in southwest USA where it uses Datura wrightii as host plant and to oviposit into its fruits. Previously, we showed that T. compacta can use 4 other Datura species as host plants also, but the mitochondrial lineages of T. compacta do not appear to be specifically associated to any Datura species. Thus, given that T. compacta is distributed from the southwest USA up to the Tehuantepec Isthmus in the Pacific coast ranges of Mexico, we aimed to determine how the genetic variation of T. compacta is distributed along the geographical space. To determine how geography has shaped the genetic population structure of T. compacta we used a 663-bp region of the COI gene in a sample of 232 individuals from 29 different localities. We detected 49 haplotypes, one of which is widely distributed. The un-rooted haplotype network and phylogeny showed that T. compacta integrates one single lineage. Also, the population genetic structure of T. compacta is made up of the admixture of 3 groups, 2 of them slightly associated geographically to the Colorado River basin. No other apparent geographic barrier to gene flow was identified despite weevils from southwest North America use D. wrightii and D. discolor as host plants, in the Pacific coasts of Mexico T. compacta uses D. reburra and D. discolor as host plants, whereas in southern Mexico it uses D. inoxia, D. pruinosa and D. discolor.

Biografía del autor/a

Juan Núñez-Farfán, Universidad Nacional Autónoma de México

Laboratorio de Genética Ecológica & Evolución
Departamento de Ecología Evolutiva
Instituto de Ecología UNAMInvestigador Titular CCiudad de México, México

Citas

Anderson, R. S., & O’Brien, C. W. (1996). Curculionidae (Coleoptera). Biodiversidad, taxonomía y biogeografía de artrópodos de México: hacia una síntesis de su conocimiento. México D.F.: Instituto de Biología, Universidad Nacional Autónoma de México.

Anducho-Reyes, M. A., Cognato, A. I., Hayes, J. L., & Zúñiga, G. (2008). Phylogeography of the bark beetle Dendroctonus mexicanus Hopkins (Coleoptera: Curculionidae: Scolytinae). Molecular Phylogenetics and Evolution, 49, 930–940. https://doi.org/10.1016/j.ympev.2008.09.005

Aoki, K., Kato, M., & Murakami, N. (2008). Glacial bottleneck and postglacial recolonization of a seed parasitic weevil, Curculio hilgendorfi, inferred from mitochondrial DNA variation. Molecular Ecology, 17, 3276–3289. https://doi.org/10.1111/j.1365-294X.2008.03830.x

Aoki, K., Kato, M., & Murakami, N. (2009). Phylogeographical patterns of a generalist acorn weevil: insight into the biogeographical history of broadleaved deciduous and evergreen forests. BMC Evolutionary Biology, 9, 103. https://doi.org/10.1186/1471-2148-9-103

Aoki, K., Kato, M., & Murakami, N. (2011). Phylogeography of phytophagous weevils and plant species in broadleaved evergreen forests: a congruent genetic gap between western and eastern parts of Japan. Insects, 2, 128–150. https://doi.org/10.3390/insects2020128

Avise, J.C. (2004). Molecular markers, natural history, and evolution, Second Edition. Sunderland, MA.: Sinauer.

Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

Barber, H. S. (1935). The tobacco and solanum weevils of the genus Trichobaris. Miscellaneous Publication No. 226. Washington D.C.: United States Department of Agriculture.

Barr, N., Ruiz-Arce, R., Obregón, O., De León, R., Foster, N., Reuter, C. et al. (2013). Molecular diagnosis of populational variants of Anthonomus grandis (Coleoptera: Curculionidae) in North America. Journal of Economic Entomology, 106, 437–449. https://doi.org/10.1603/EC12340

Bryson, R. W., Jaeger, J. R., Lemos-Espinal, J. A., & Lazcano, D. (2012). A multilocus perspective on the speciation history of a North American aridland toad (Anaxyrus punctatus). Molecular Phylogenetics and Evolution, 64, 393–400. https://doi.org/10.1016/j.ympev.2012.04.014

Corander, J., & Tang, J. (2007). Bayesian analysis of population structure based on linked molecular information. Mathematical Biosciences, 205, 19–31. https://doi.org/10.1016/j.mbs.2006.09.015

Corander, J., Marttinen, P., Sirén, J., & Tang, J. (2008). Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics, 9, 539. https://doi.org/10.1186/1471-2105-9-539

De la Mora, M., Piñero, D., & Núñez-Farfán, J. (2015). Phylogeography of specialist weevil Trichobaris soror: a seed predator of Datura stramonium. Genetica, 143, 681–691. https://doi.org/10.1007/s10709-015-9866-x

De la Mora, M., Piñero, D., Oyama, K., Farrell, B., Magallón, S., & Núñez-Farfán, J. (2018). Evolution of Trichobaris (Curculionidae) in relation to host plants: Geometric morphometrics, phylogeny and phylogeography. Molecular Phylogenetics and Evolution, 124, 37–49. https://doi.org/10.1016/j.ympev.2018.02.018

Diezel, C., Allmann, S., & Baldwin, I. T. (2011). Mechanisms of optimal defense patterns in Nicotiana attenuata: flowering attenuates herbivory‐elicited Ethylene and Jasmonate Signaling F. Journal of Integrative Plant Biology, 53, 971–983. https://doi.org/10.1111/j.1744-7909.2011.01086.x

Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. https://doi.org/10.1186/1471-2148-7-214

Dupanloup, I., Schneider, S., & Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581. http://doi.org/10.1046/j.1365-294X.2002.01650.x

Dupin, J., Matzke, N. J., Särkinen, T., Knapp, S., Olmstead, R. G., Bohs, L. et al. (2016). Bayesian estimation of the global biogeographical history of the Solanaceae. Journal of Biogeography, 44, 887–899. http://doi.org/10.1111/jbi.12898

Excoffier, L, Laval, G., & Schneider, S. (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50. http://doi.org/10.1177/117693430500100003

Fu, Y. X., & Li W-H. (1993) Statistical test of neutrality mutations. Genetics, 147, 915–923. https://doi.org/10.1093/genetics/133.3.693

García-Trejo, E. A., Navarro, S., & Adolfo, G. (2004). Patrones biogeográficos de la riqueza de especies y el endemismo de la avifauna en el oeste de México. Acta Zoológica Mexicana, 20, 167–185. ISSN 2448-8445.

Halffter, G. (1976). Distribución de los insectos en la Zona de Transición Mexicana. Relaciones con la entomofauna de Norteamérica. Folia Entomológica Mexicana, 35, 1–64.

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010

Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge

University Press. https://doi.org/10.1017/CBO9780511623486

Kuester, A. P., Jones, R. W., Sappington, T. W., Kim, K. S., Barr, N. B., Roehrdanz, R. L. et al. (2012). Population structure and genetic diversity of the boll weevil (Coleoptera: Curculionidae) on Gossypium in North America. Annals of the Entomological Society of America, 105, 902–916. https://doi.org/10.1603/AN12072

Leache, A. D., & Mulcahy, D. G. (2007). Phylogeny, divergence times and species limits of spiny lizards (Sceloporus magister species group) in western North American deserts and Baja California. Molecular Ecology, 16, 5216–5233. https://doi.org/10.1111/j.1365-294X.2007.03556.x

Li, S., Jovelin, R., Yoshiga, T., Tanaka, R., & Cutter, A. D. (2014). Specialist versus generalist life histories and nucleotide diversity in Caenorhabditis nematodes. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132858. https://doi.org/10.1098/rspb.2013.2858

Luna-Cavazos, M., & Bye, R. (2011). Phytogeographic analysis of the genus Datura (Solanaceae) in continental Mexico. Revista Mexicana de Biodiversidad, 82, 977–988. http://dx.doi.org/10.22201/ib.20078706e.2011.3.720

Mantooth, S. J., Hafner, D. J., Bryson, R. W., & Riddle, B. R. (2013). Phylogeographic diversification of antelope squirrels (Ammospermophilus) across North American deserts. Biological Journal of the Linnean Society, 109, 949–967. https://doi.org/10.1111/bij.12084

Morrone, J. J. (2015). Halffter’s Mexican transition zone (1962–2014), cenocrons and evolutionary biogeography. Journal of Zoological Systematics and Evolutionary Research, 53, 249–257. https://doi.org/10.1111/jzs.12098

Morse, G. E., & Farrell, B. D. (2005). Ecological and evolutionary diversification of the seed beetle genus Stator (Coleoptera: Chrysomelidae: Bruchinae). Evolution, 59, 1315–1333. https://doi.org/10.1111/j.0014-3820.2005.tb01782.x

Nakamine, H., & Takeda, M. (2008) Molecular phylogenetic relationships of flightless beetles belonging to the genus Mesechthistatus Breuning, (Coleoptera: Cerambycidae) inferred from mitochondrial COI sequences. Journal of Insect Science, 8, 1–11. https://doi.org/10.1673/031.008.7001

Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press. https://doi.org/10.7312/nei-92038-005

Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569. https://doi.org/10.1093/oxfordjournals.molbev.a040727

Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X., & Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496–2497. https://doi.org/10.1093/bioinformatics/btg359

Ruiz, E. A., Rinehart, J. E., Hayes, J. L., & Zúñiga, G. (2010). Historical demography and phylogeography of a specialist bark beetle, Dendroctonus pseudotsugae Hopkins (Curculionidae: Scolytinae). Environmental Entomology, 39, 1685–1697. https://doi.org/10.1603/EN09339

Sota, T., Hayashi, M., & Iwai, D. (2004). Phylogeography of the leaf beetle Chrysolina pectina in wetlands of Japan inferred from the distribution of mitochondrial haplotypes. Entomological Science, 7, 381–388. https://doi.org/10.1111/j.1479-8298.2004.00087.x

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.

Zarza, E., Reynoso, V. H., & Emerson, B. C. (2008). Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species. Molecular Ecology, 17, 3259–3275. https://doi.org/10.1111/j.1365-294X.2008.03826.x

Descargas

Archivos adicionales

Publicado

2021-04-05

Número

Sección

EVOLUCIÓN