Genetic diversity and phylogenetic relationships among and within Amaranthus spp. using RAPD markers

Autores/as

  • Reda H. Sammour King Saud University
  • Mohammed Mira Tanta University
  • Safa Radwan Tanta University
  • Salwa Fahmey King Saud University

DOI:

https://doi.org/10.22201/ib.20078706e.2020.91.3254

Palabras clave:

Amaranthus spp., Jaccard similarity coefficient, Phylogenetic relationships, RAPD analysis, Principal coordinate analysis (PCA)

Resumen

Random Amplified Polymorphic DNA (RAPD) markers were used to investigate genetic diversity and phylogenetic relationships among 10 species belonging to the genus Amaranthus L. The results showed that the polymorphism in cultivated species was lower than that in wild ones, reflecting the selection pressures of domestication on genetic
diversity in cultivated species. A specific RAPD marker was detected for each of A. powellii PI 572262, A. tricolor PI 462129, A. palmeri PI 607455, A. caudatus PI 511679 and A. quitensis PI 511744. The overall mean similarity index of amplified fragments generated by RAPD primers on genomic DNA of Amaranthus accessions indicated
that A. hypochondriacus was the closest grain amaranth to A. hybridus, followed by A. caudatus and A. cruentus. A. tricolor had a maximum genetic distance from grain amaranth species, confirming its morphological classification in a distinct subgenus Albersia. Similarly, the accessions of A. palmeri were separated in a distinct cluster, supporting its classification in a distinct subgenus Acnida. A. hybridus accessions were gathered together with grain amaranth species, thereby supporting the single progenitor hypothesis for grain amaranths. A. spinosus was separated on a distinct principal coordinate axe, indicating its low correlation with other species and confirming its morphological classification in a distinct section, i.e. Centrusa.

Biografía del autor/a

Reda H. Sammour, King Saud University

Department of Botany and Microbiology, College of science, King Saud University

Citas

Adhikary, D., & Pratt, D. B. (2015). Morphologic and taxonomic analysis of the weedy and cultivated Amaranthus hybridus species complex. Systematic Botany, 40, 604–610. https://doi.org/10.1600/036364415x688376

Akin-Idowu, P. M., Gbadegesin, M. A., Orkpeh, U., Ibitoye, D. O., Oyeronke, A., & Odunola, O. A. (2016). Characterization of grain amaranth (Amaranthus spp.) germplasm in South West Nigeria using morphological, nutritional, and Random Amplified Polymorphic DNA (RAPD) analysis. https://doi.org/10.3390/resources5010006

Costea, M. (2003). The identity of a cultivated Amaranthus from Asia and a new nomenclature combination. Economic Botany, 57, 646–649. https://doi.org/10.1663/

-0001(2003)057[0646:noep]2.0.co;2

Costea, M., Brenner, D. M., Tardif, F. J., Tan, Y. F., & Sun, M. (2006). Delimitation of Amaranthus cruentus L. and Amaranthus caudatus L. using micromorphology and AFLP analysis: an application in germplasm identification. Genetic Resources and Crop Evolution, 53, 1625–1633. https://doi.org/10.1007/s10722-005-2288-3

Costea, M., Sanders, A., & Waines, G. (2001). Preliminary results toward a revision of the Amaranthus hybridus species complex (Amaranthaceae). Sida, 19, 931–974.

Costea, M., Weaver, S. E., & Tardif, F. J. (2003). The biology of Canadian weeds. 126. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Canadian Journal of Plant Science, 84, 631–668. https://doi.org/10.4141/p02-183

Das, S. (2016). Amaranthus: a promising crop of future. Singapore: Springer Nature.

Doyle, J., & Doyle, L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 2015, 1–14. https://doi.org/10.1155/2015/431487

Greizerstein, E., Naranjo, C. A., & Poggio, L. (1997). Karyological studies in five wild Amaranthus. Cytologia, 62,115–120. https://doi.org/10.1508/cytologia.62.115

Hernández-Ledesma, P., Berendsohn, W. G., Borsch, T., Von Mering, S., Akhani, H., Arias, S. et al. (2015). A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Wildenowia, 45, 281–383. https://doi.org/10.3372/wi.45.45301

Iamonico, D. (2010). On the presence of Amaranthus polygonoides L. (Amaranthaceae) in Europe. Phyton, 50, 205–219.

Iamonico, D. (2014). Lectotypification of Linnaean names in the genus Amaranthus L. (Amaranthaceae). Taxon, 63, 146–150. https://doi.org/10.12705/631.34

Iamonico, D. (2015). Taxonomic revision of the genus Amaranthus (Amaranthaceae) in Italy. Phytotaxa, 199, 1–84. https://doi.org/10.11646/phytotaxa.199.1.1

Joshi, B. K. (2017). Biotechnology for conservation and utilization of agricultural plant genetic resources in Nepal. Journal of Nepal Agricultural Research Council Conservation Biotechnology, 3, 49–59. https://doi.org/10.3126/jnarc.v3i1.17276

Kietlinski, K. D., Félix-Jiménez, F., Jellen, E. N., Maughan, P. J., Smith, S. M., Donald, B. et al. (2014). Relationships between the weedy Amaranthus hybridus (Amaranthaceae) and the grain Amaranths. Crop Science, 54, 220–228. https://doi.org/10.2135/cropsci2013.03.0173

Lymanskaya, S. (2012). Estimation of the genetic variability of an amaranth collection (Amaranthus L.) by RAPD analysis. Cytology and Genetics, 46, 210–216. https://doi.org/10.3103/s0095452712040093

Mallory, M. A., Hall, R. V., McNabb, A. R., Pratt, D. B., Jellen, E. N., & Maughan, P. J. (2008). Development and characterization of microsatellite markers for the grain amaranths (Amaranthus spp. L.). Crop Science, 48, 1098–1106. https://doi.org/10.2135/cropsci2007.08.0457

Mandal, N., & Das, P. K. (2002). Intra-and interspecific genetic diversity in grain Amaranthus using random amplified polymorphic DNA markers. Plant Tissues Culture, 12, 49–56.

Marfila, C. F., Hidalgob, V., & Masuelli, R. W. (2015). In situ conservation of wild potato germplasm in Argentina: Examples and possibilities. Global Ecology and Conservation, 3, 461–476. https://doi.org/10.1016/j.gecco.2015.01.009

Maughan, P. J., Smith, S. M., Fairbanks, D. J., & Jellen, E. N. (2011). Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.). Plant Genetics, 4, 1–10. https://doi.org/10.3835/plantgenome2010.12.0027

Mosyakin, S., & Robertson, R. (1996). New infrageneric taxa and combinations in Amaranthus (Amaranthaceae). Annales Botanici Fennici, 33, 275–281.

Patel, A., Pravez, M., Deeba, F., Pruthi, V., Singh, R. P., & Pruthi, P. A. (2014). Boosting accumulation of neutral lipids in Rhodosporidium kratochvilovae HIMPA1 grown on hemp (Cannabis sativa Linn) seed aqueous extract as feedstock for biodiesel production. Bioresource Technology, 165, 214–222. https://doi.org/10.1016/j.biortech.2014.03.142

Pino, I. S., Pratt, D., & Flores-Olvera, H. (2017). A new species of Amaranthus (Amaranthaceae) from Mexico. Phytotaxa, 291, 201–208. https://doi.org/10.11646/phytotaxa.291.3.4

Popa, G., Cornea, C. P., Ciuca, M., Babeanu, N., Popa, O., & Marin, D. (2010). Studies on genetic diversity in Amaranthus species using the RAPD markers. Analele Universităţii din Oradea - Fascicula Biologie, 2, 280–285.

Pratt, D. B., Jhangiani, S. N., & Wiggers, R. J. (2008). 2C DNA content values in Amaranthus (Amaranthaceae). Journal of the Botanical Research Institute of Texas, 2, 1219–1223.

Rao, R., & Hodgkin, T. (2002). Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture, 68, 1–19.

Ray, T., & Roy, S. C. (2008). Genetic diversity of Amaranthus species from the Indo-Gangetic plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker. Oxford Journals, 100, 338–347. https://doi.org/10.1093/jhered/esn102

Sauer, J. D. (1957). Recent migration and evolution of the dioecious amaranths. Evolution, 11, 11–31. https://doi.org/10.1111/j.1558-5646.1957.tb02872.x

Sauer, J. D. (1967). The grain amaranths and their relatives: a revised taxonomic and geographic survey. Annals of the Missouri Botanical Garden, 54, 102–137. https://doi.org/10.2307/2394998

Sompornpailin, K., & Khanthang, S. (2015), Detection of the genetic variability of Amaranthus by RAPD and ISSR markers. Pakistan Journal of Botany, 46, 1293–1301.

Stefunova, V., Bezo, T. M., Ziarovska, J., & Razna, K. (2015). Detection of the genetic variability of Amaranthus by RAPD and ISSR markers. Pakistan Journal of Botany, 47, 1293–1301.

Stetter, M. G., Muller, T., & Schmid, K. J. (2017) Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus). Molecular Ecology, 26, 871–886. https://doi.org/10.1111/mec.13974

Stetter, M. G., & Schmid, K. J. (2017) Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Molecular Phylogenetics and Evolution, 109, 80–92. https://doi.org/10.1016/j.ympev.2016.12.029

Ward, S. M., Webster, T. M., & Stecke, L. E. (2013), Palmer amaranth (Amaranthus palmeri): A review. Weed Technology, 27, 12–27. https://doi.org/10.1614/wt-d-12-00113.1

Waselkov, K. E., Boleda, A. S., & Olsen, K. M. (2018). A phylogeny of the genus Amaranthus (Amaranthaceae) based on several low-copy nuclear loci and chloroplast regions. Systematic Botany, 43, 439–458. https://doi.org/10.1600/036364418x697193

Williams, J., Kubelik, A., Livak, K., Rafalski, J., & Tingey, S. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535. https://doi.org/10.1093/nar/18.22.6531

Xu, F., & Sun, M. (2001). Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent inter simple sequence repeat markers. Molecular Phylogenetics and Evolution, 21, 372–387. https://doi.org/10.1006/mpev.2001.1016

Descargas

Publicado

2020-10-02

Número

Sección

CONSERVACIÓN