Mobilization and transfer of nine macro-and micronutrients to Pinus greggii seedlings via arbuscular mycorrhizal fungi

Autores/as

  • Alicia Franco-Ramírez Colegio de Posgraduados
  • Jesús Pérez-Moreno Colegio de Postgraduados Campus Montecillo, http://orcid.org/0000-0001-5216-8313
  • Gabriela Sánchez-Viveros Universidad Veracruzana
  • Carlos R. Cerdán-Cabrera Universidad Veracruzana
  • Juan J. Almaraz-Suárez Colegio de Posgraduados
  • Víctor M. Cetina-Alcalá Colegio de Posgraduados
  • Alejandro Alarcón Colegio de Posgraduados

DOI:

https://doi.org/10.22201/ib.20078706e.2021.92.3238

Palabras clave:

Glomeromycota, Pinaceae, Neotropic, Nutrient mobilization, Arbuscular mycorrhiza

Resumen

Traditionally, it is thought that arbuscular mycorrhizae establish a symbiosis with the roots of angiosperm plants. However, the translocation of macro- and micronutrients in gymnosperms via arbuscular mycorrhizal fungi (AMF) has not been reported so far. The present work evaluated whether arbuscular mycorrhizae are able to establish and mobilize nutrients in the neotropical Pinaceae Pinus greggii. The seedlings of this tree were inoculated with three consortia of AMF isolated from an agricultural site, a forest of Cupressus lusitanica and a forest of Pinus hartwegii. There was evidence of translocation of macro- and micronutrients in plants inoculated with the three consortia evaluated. Translocation was greater for Mg, Mn and Zn in plants inoculated with the consortium of fungi from the pine forest after 7 months. In addition to these positive effects, colonization of 10 to 15% and 20 to 38% was observed depending on the AMF consortia after 2 and 7 months, respectively. In the present work, we report for the first time that AMF mobilize N, P, K, Ca, Mg, Fe, Mn, Zn, Cu and B in gymnosperms, indicating that this mycorrhizal symbiosis is more complex than previously believed.

Biografía del autor/a

Jesús Pérez-Moreno, Colegio de Postgraduados Campus Montecillo,

Investigador Colegio de Postgraduados

Citas

Aalipour, H., Nikbakht, A., Etemadi, N., Rejali, F., & Soleimani, M. (2020). Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Scientia Horticulturae, 261, 108923. https://doi.org/10.1016/j.scienta.2019.108923

Alejandro, S., Höller, S., Meier, B., & Peiter, E. (2020). Manganese in plants: from acquisition to subcellular allocation. Frontiers in Plant Science, 11, 300. https://doi.org/10.3389/fpls.2020.00300

Allen, S. E., Grimshaw, H. M., Parkinson, J. A., & Quarmbym, C. (1997). Chemical analysis of ecological materials. Oxford, UK: Blackwell Scientific Publications.

Arines, J., Vilariño, A., & Sainz, M. (1989). Effect of different inocula of vesicular-arbuscular mycorrhizal fungi on the content and concentration of manganese in red clover plants (Trifolium pratense L.). New Phytologist, 112, 215-219.

https://doi.org/10.1111/j.1469-8137.1989.tb02376.x

Bethlenfalvay, G. J., & Franson, R. L. (1989). Manganese toxicity alleviated by mycorrhizae in soybean. Journal of Plant Nutrition, 12, 953–970. https://doi.org/10.1080/01904168909364006

Bomfleur, B., Decombeix, A. L., Escapa, I. H., Schwendemann, A. B., & Axsmith, B. (2013). Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. International Journal of Plant Sciences, 174, 425–444. http://dx.doi.org/10.1086/668686.

Bonfante, P., & Genre, A. (2008). Plants and arbuscular mycorrhizal fungi: an evolutionary developmental perspective. Trends in Plant Science, 13, 492–498. http://dx.doi.org/10.1016/j.tplants.2008.07.001

Bremner, J. M. (1975). Total Nitrogen. In C. A. Black (Ed.), Methods of soil analysis. Agronomy Part 2 (pp. 1149-1178). Madison, Wisconsin: American Society of Agronomy.

Bush, J. K. (2008). The potential role of mycorrhizae in the growth and establishment of Juniperus seedlings. In Van Auken, O. W. (Ed.) Western North American Juniperus communities. Ecological Studies, Vol. 196. New York: Springer. https://doi.org/10.1007/978-0-387-34003-6_6

Carrasco-Hernández, V., Pérez-Moreno, J., Espinosa-Hernández, V., Almaraz-Suárez, J., Quintero-Lizaola, R., & Torres-Aquino, M. (2011). Contenido de nutrientes e inoculación con hongos ectomicorrízicos comestibles en dos pinos neotropicales. Revista Chilena de Historia Natural, 84, 83–96. http://dx.doi.org/10.4067/S0716-078X2011000100006

Cázares, E., & Smith, J. E. (1995). Occurrence of vesicular-arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon Coast Range soils. Mycorrhiza, 6, 65–67. https://doi.org/10.1007/s005720050108

Cázares, E., & Trappe, J. M. (1993). Vesicular endophytes in roots of the Pinaceae. Mycorrhiza, 2, 153–156. https://doi.org/10.1007/BF00210584

Dučić, T., Berthold, D., Langenfeld-Heyser, R., Beese, F., & Polle, A. (2009). Mycorrhizal communities in relation to biomass production and nutrient use efficiency in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in different forest soils. Soil Biology and Biochemistry, 41, 742–753. https://doi.org/10.1016/j.soilbio.2009.01.013

Fisher, J. B., & Vovides, A. P. (2004). Mycorrhizae are present in cycad roots. The Botanical Review, 70, 16–23. https://doi.org/10.1663/0006-8101(2004)070

Garcia, K. G. V., Mendes-Filho, P. F., Pinheiro, J. I., Carmo do, J. F., Pereira, A. P. A., Martins, C. M. et al. (2020). Attenuation of Manganese-induced toxicity in Leucaena leucocephala colonized by arbuscular mycorrhizae. Water Air Soil Pollution, 231, 22. https://doi.org/10.1007/s11270-019-4381-9

García-Díaz, S., E., Arnulfo, A., Alvarado-Rosales, D., Cibrián-Tovar, D., Méndez-Montiel, J. T., Valdovinos-Ponce, G. et al. (2017). Efecto de Fusarium circinatum en la germinación y crecimiento de plántulas de Pinus greggii en tres sustratos. Agrociencia, 51, 895–908. https://www.redalyc.org/articulo.oa?id=30253817006

Harper, C. J., Taylor, T. N., Krings, M., & Taylor, E. L. (2015). Arbuscular mycorrhizal fungi in a voltzialean conifer from the Triassic of Antarctic. Review of Palaeobotany and Palynology, 215, 76–84. https://doi.org/10.1016/J.REVPALBO.2015.01.005

Hassan, Z. M., Narges, K. A., & Faezeh, G. (2017). Influence of mycorrhizal fungi on growth, chlorophyll content, and potassium and magnesium uptake in maize. Journal of Plant Nutrition, 40, 2026–2032. https://doi.org/10.1080/01904167.2017.1346119

INVAM. (2020). International culture collection of vesicular-arbuscular mycorrhizal fungi. West Virginia University. Retrieved on June 2, 2020, from: http://invam.caf.wvu.edu/

Jansa, J., Wiemken, A., & Frossard, E. (2006). The effects of agricultural practices on arbuscular mycorrhizal fungi. In E. Frossard, W.E.H. Blum, B.P. Warkentin (Eds.), Function of soils for human societies and the environment (pp. 89–115). London: Geological Society of London. https://doi.org/10.1144/GSL.SP.2006.266.01.08

Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S., & Turner, B. L. (2015). Leaf Manganese accumulation and Phosphorus-acquisition efficiency. Trends in Plant Science, 20, 83–90. https://doi.org/10.1016/j.tplants.2014.10.007

López-García, Á., Hempel, S., de D. Miranda, J., Rillig, M. C., Barea J. M., & Azcón-Aguilar, C. (2013). The influence of environmental degradation processes on the arbuscular mycorrhizal fungal community associated with yew (Taxus baccata L.), an endangered tree species from Mediterranean ecosystems of Southeast Spain. Plant Soil, 370, 355–366. https://doi.org/10.1007/s11104-013-1625-0

McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115, 495–501. http://doi.wiley.com/10.1111/j.1469-8137.1990.tb00476.x

Moreira-Souza, M., Trufem, S. F. B., Gomes-da Costa, S. M., & Cardoso, E. J. B. N. (2003). Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza, 3, 211–215. https://doi.org/10.1007/s00572-003-0221-1

Muthukumar, T., & Udaiyan, K. (2002). Arbuscular mycorrhizas in cycads of southern India. Mycorrhiza, 12, 213–217. https://doi.org/10.1007/s00572-002-0179-4

Nogueira, M. A., & Cardoso, E. J. B. N. (2003). Eficacia micorrízica toxicidad del manganeso en la soja afectada por el tipo de suelo y el endófito. Scientia Agricola, 60, 329–335. https://doi.org/10.1590/S0103-90162003000200018

Padamsee, M., Johansen, R. B., Stuckey, S. A., Williams, S. E., Hooker, J. E., Burns, B. R. et al. (2016). The arbuscular mycorrhizal fungi colonising roots and root nodules of New Zealand kauri Agathis australis. Fungal Biology, 120, 807–817. https://doi.org/10.1016/j.funbio.2016.01.015

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions British Mycological Society, 55, 158–161. https://doi.org/10.1016/S0007-1536%2870%2980110-3

Russell, A. J., Bidartondo, M. I., & Butterfield, B. G. (2002). The root nodules of the Podocarpaceae harbour arbuscular mycorrhizal fungi. New Phytologist, 156, 283–295. https://doi.org/10.1046/j.1469-8137.2002.00504.x

Salgado, M. E., Barroetaveña, C., & Rajchenberg, M. (2013). Pseudotsuga menziesii invasion in native forests of Patagonia, Argentina: What about mycorrhizas? Acta Oecologica, 49, 5–11. https://doi.org/10.1016/j.actao.2013.01.018

SAS. (2002). The SAS system for windows, ver. 9.0. SAS Institute Inc, Cary, North Carolina. USA.

Sharif, M., & Claassen, N. (2011). Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere, 21, 502–511. https://doi.org/10.1016/S1002-0160(11)60152-5

Siqueira, J. O., Lambais, M. R., & Sturmer, S. L. (2002). Fungos micorrízicos arbusculares: características, associação simbiótica e aplicação na agricultura. Biotecnologia Ciência y Desenvolvimento, 25, 12–21.

Smith, J., Johnson, K. A., & Cázares, E. (1998). Mycorrhizal colonization of seedlings of Pinaceae and Betulaceae following spore inoculation with Glomus intraradices. Mycorrhiza, 7, 279–285. https://doi.org/10.1007/s005720050193

Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. New York: Academic Press.

Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L. et al. (2016). A Phylum-level phylogenetic classification of Zygomycete fungi based on genome-scale data. Mycologia, 108, 1028–1046. https://doi.org/10.3852/16-042

Strullu-Derrien, C., Selosse, M. A., Kenrick, P., & Martin, F. M. (2018). The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist, 220, 1012–1030. https://doi.org/10.1111/nph.15076

Varma, A., Prasad, R., & Tuteja, N. (Eds.). (2017). Mycorrhiza, function, diversity, state of the art. Cham, Switzerland: Springer.

Wagg, C., Maderia, P., & Peterson, R. (2011). Arbuscular mycorrhizal fungal phylogeny-related interactions with a non-host. Symbiosis, 53, 41–46. https://doi.org/10.1007/s13199-011-0107-5

Wagg, C., Pautler, M., Hugues, B., Massicotte, R., & Peterson, L. (2008). The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza, 18, 103–110. https://doi.org/10.1007/s00572-007-0157-y

Wang, B., Yeun, L. H., Xue, J. Y., Liu, Y, Ané, J. M., & Qiu, Y. L. (2010). Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytologist, 186, 514–525. https://doi.org/10.1111/j.1469-8137.2009.03137.x

Xiao, J. X., Hu, C. Y., Chen, Y. Y., Yang, B., & Hua, J. (2014). Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth, magnesium distribution and photosynthesis of two citrus cultivars. Scientia Horticulturae, 177, 14–20. https://doi.org/10.1016/j.scienta.2014.07.01

arbuscular mycorrhiza in gymnosperms

Descargas

Publicado

2021-07-02

Número

Sección

ECOLOGÍA