Mobilization and transfer of nine macro-and micronutrients to Pinus greggii seedlings via arbuscular mycorrhizal fungi
DOI:
https://doi.org/10.22201/ib.20078706e.2021.92.3238Palabras clave:
Glomeromycota, Pinaceae, Neotropic, Nutrient mobilization, Arbuscular mycorrhizaResumen
Traditionally, it is thought that arbuscular mycorrhizae establish a symbiosis with the roots of angiosperm plants. However, the translocation of macro- and micronutrients in gymnosperms via arbuscular mycorrhizal fungi (AMF) has not been reported so far. The present work evaluated whether arbuscular mycorrhizae are able to establish and mobilize nutrients in the neotropical Pinaceae Pinus greggii. The seedlings of this tree were inoculated with three consortia of AMF isolated from an agricultural site, a forest of Cupressus lusitanica and a forest of Pinus hartwegii. There was evidence of translocation of macro- and micronutrients in plants inoculated with the three consortia evaluated. Translocation was greater for Mg, Mn and Zn in plants inoculated with the consortium of fungi from the pine forest after 7 months. In addition to these positive effects, colonization of 10 to 15% and 20 to 38% was observed depending on the AMF consortia after 2 and 7 months, respectively. In the present work, we report for the first time that AMF mobilize N, P, K, Ca, Mg, Fe, Mn, Zn, Cu and B in gymnosperms, indicating that this mycorrhizal symbiosis is more complex than previously believed.Citas
Aalipour, H., Nikbakht, A., Etemadi, N., Rejali, F., & Soleimani, M. (2020). Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Scientia Horticulturae, 261, 108923. https://doi.org/10.1016/j.scienta.2019.108923
Alejandro, S., Höller, S., Meier, B., & Peiter, E. (2020). Manganese in plants: from acquisition to subcellular allocation. Frontiers in Plant Science, 11, 300. https://doi.org/10.3389/fpls.2020.00300
Allen, S. E., Grimshaw, H. M., Parkinson, J. A., & Quarmbym, C. (1997). Chemical analysis of ecological materials. Oxford, UK: Blackwell Scientific Publications.
Arines, J., Vilariño, A., & Sainz, M. (1989). Effect of different inocula of vesicular-arbuscular mycorrhizal fungi on the content and concentration of manganese in red clover plants (Trifolium pratense L.). New Phytologist, 112, 215-219.
https://doi.org/10.1111/j.1469-8137.1989.tb02376.x
Bethlenfalvay, G. J., & Franson, R. L. (1989). Manganese toxicity alleviated by mycorrhizae in soybean. Journal of Plant Nutrition, 12, 953–970. https://doi.org/10.1080/01904168909364006
Bomfleur, B., Decombeix, A. L., Escapa, I. H., Schwendemann, A. B., & Axsmith, B. (2013). Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. International Journal of Plant Sciences, 174, 425–444. http://dx.doi.org/10.1086/668686.
Bonfante, P., & Genre, A. (2008). Plants and arbuscular mycorrhizal fungi: an evolutionary developmental perspective. Trends in Plant Science, 13, 492–498. http://dx.doi.org/10.1016/j.tplants.2008.07.001
Bremner, J. M. (1975). Total Nitrogen. In C. A. Black (Ed.), Methods of soil analysis. Agronomy Part 2 (pp. 1149-1178). Madison, Wisconsin: American Society of Agronomy.
Bush, J. K. (2008). The potential role of mycorrhizae in the growth and establishment of Juniperus seedlings. In Van Auken, O. W. (Ed.) Western North American Juniperus communities. Ecological Studies, Vol. 196. New York: Springer. https://doi.org/10.1007/978-0-387-34003-6_6
Carrasco-Hernández, V., Pérez-Moreno, J., Espinosa-Hernández, V., Almaraz-Suárez, J., Quintero-Lizaola, R., & Torres-Aquino, M. (2011). Contenido de nutrientes e inoculación con hongos ectomicorrízicos comestibles en dos pinos neotropicales. Revista Chilena de Historia Natural, 84, 83–96. http://dx.doi.org/10.4067/S0716-078X2011000100006
Cázares, E., & Smith, J. E. (1995). Occurrence of vesicular-arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon Coast Range soils. Mycorrhiza, 6, 65–67. https://doi.org/10.1007/s005720050108
Cázares, E., & Trappe, J. M. (1993). Vesicular endophytes in roots of the Pinaceae. Mycorrhiza, 2, 153–156. https://doi.org/10.1007/BF00210584
Dučić, T., Berthold, D., Langenfeld-Heyser, R., Beese, F., & Polle, A. (2009). Mycorrhizal communities in relation to biomass production and nutrient use efficiency in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in different forest soils. Soil Biology and Biochemistry, 41, 742–753. https://doi.org/10.1016/j.soilbio.2009.01.013
Fisher, J. B., & Vovides, A. P. (2004). Mycorrhizae are present in cycad roots. The Botanical Review, 70, 16–23. https://doi.org/10.1663/0006-8101(2004)070
Garcia, K. G. V., Mendes-Filho, P. F., Pinheiro, J. I., Carmo do, J. F., Pereira, A. P. A., Martins, C. M. et al. (2020). Attenuation of Manganese-induced toxicity in Leucaena leucocephala colonized by arbuscular mycorrhizae. Water Air Soil Pollution, 231, 22. https://doi.org/10.1007/s11270-019-4381-9
García-Díaz, S., E., Arnulfo, A., Alvarado-Rosales, D., Cibrián-Tovar, D., Méndez-Montiel, J. T., Valdovinos-Ponce, G. et al. (2017). Efecto de Fusarium circinatum en la germinación y crecimiento de plántulas de Pinus greggii en tres sustratos. Agrociencia, 51, 895–908. https://www.redalyc.org/articulo.oa?id=30253817006
Harper, C. J., Taylor, T. N., Krings, M., & Taylor, E. L. (2015). Arbuscular mycorrhizal fungi in a voltzialean conifer from the Triassic of Antarctic. Review of Palaeobotany and Palynology, 215, 76–84. https://doi.org/10.1016/J.REVPALBO.2015.01.005
Hassan, Z. M., Narges, K. A., & Faezeh, G. (2017). Influence of mycorrhizal fungi on growth, chlorophyll content, and potassium and magnesium uptake in maize. Journal of Plant Nutrition, 40, 2026–2032. https://doi.org/10.1080/01904167.2017.1346119
INVAM. (2020). International culture collection of vesicular-arbuscular mycorrhizal fungi. West Virginia University. Retrieved on June 2, 2020, from: http://invam.caf.wvu.edu/
Jansa, J., Wiemken, A., & Frossard, E. (2006). The effects of agricultural practices on arbuscular mycorrhizal fungi. In E. Frossard, W.E.H. Blum, B.P. Warkentin (Eds.), Function of soils for human societies and the environment (pp. 89–115). London: Geological Society of London. https://doi.org/10.1144/GSL.SP.2006.266.01.08
Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S., & Turner, B. L. (2015). Leaf Manganese accumulation and Phosphorus-acquisition efficiency. Trends in Plant Science, 20, 83–90. https://doi.org/10.1016/j.tplants.2014.10.007
López-García, Á., Hempel, S., de D. Miranda, J., Rillig, M. C., Barea J. M., & Azcón-Aguilar, C. (2013). The influence of environmental degradation processes on the arbuscular mycorrhizal fungal community associated with yew (Taxus baccata L.), an endangered tree species from Mediterranean ecosystems of Southeast Spain. Plant Soil, 370, 355–366. https://doi.org/10.1007/s11104-013-1625-0
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115, 495–501. http://doi.wiley.com/10.1111/j.1469-8137.1990.tb00476.x
Moreira-Souza, M., Trufem, S. F. B., Gomes-da Costa, S. M., & Cardoso, E. J. B. N. (2003). Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza, 3, 211–215. https://doi.org/10.1007/s00572-003-0221-1
Muthukumar, T., & Udaiyan, K. (2002). Arbuscular mycorrhizas in cycads of southern India. Mycorrhiza, 12, 213–217. https://doi.org/10.1007/s00572-002-0179-4
Nogueira, M. A., & Cardoso, E. J. B. N. (2003). Eficacia micorrízica toxicidad del manganeso en la soja afectada por el tipo de suelo y el endófito. Scientia Agricola, 60, 329–335. https://doi.org/10.1590/S0103-90162003000200018
Padamsee, M., Johansen, R. B., Stuckey, S. A., Williams, S. E., Hooker, J. E., Burns, B. R. et al. (2016). The arbuscular mycorrhizal fungi colonising roots and root nodules of New Zealand kauri Agathis australis. Fungal Biology, 120, 807–817. https://doi.org/10.1016/j.funbio.2016.01.015
Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions British Mycological Society, 55, 158–161. https://doi.org/10.1016/S0007-1536%2870%2980110-3
Russell, A. J., Bidartondo, M. I., & Butterfield, B. G. (2002). The root nodules of the Podocarpaceae harbour arbuscular mycorrhizal fungi. New Phytologist, 156, 283–295. https://doi.org/10.1046/j.1469-8137.2002.00504.x
Salgado, M. E., Barroetaveña, C., & Rajchenberg, M. (2013). Pseudotsuga menziesii invasion in native forests of Patagonia, Argentina: What about mycorrhizas? Acta Oecologica, 49, 5–11. https://doi.org/10.1016/j.actao.2013.01.018
SAS. (2002). The SAS system for windows, ver. 9.0. SAS Institute Inc, Cary, North Carolina. USA.
Sharif, M., & Claassen, N. (2011). Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere, 21, 502–511. https://doi.org/10.1016/S1002-0160(11)60152-5
Siqueira, J. O., Lambais, M. R., & Sturmer, S. L. (2002). Fungos micorrízicos arbusculares: características, associação simbiótica e aplicação na agricultura. Biotecnologia Ciência y Desenvolvimento, 25, 12–21.
Smith, J., Johnson, K. A., & Cázares, E. (1998). Mycorrhizal colonization of seedlings of Pinaceae and Betulaceae following spore inoculation with Glomus intraradices. Mycorrhiza, 7, 279–285. https://doi.org/10.1007/s005720050193
Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. New York: Academic Press.
Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L. et al. (2016). A Phylum-level phylogenetic classification of Zygomycete fungi based on genome-scale data. Mycologia, 108, 1028–1046. https://doi.org/10.3852/16-042
Strullu-Derrien, C., Selosse, M. A., Kenrick, P., & Martin, F. M. (2018). The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist, 220, 1012–1030. https://doi.org/10.1111/nph.15076
Varma, A., Prasad, R., & Tuteja, N. (Eds.). (2017). Mycorrhiza, function, diversity, state of the art. Cham, Switzerland: Springer.
Wagg, C., Maderia, P., & Peterson, R. (2011). Arbuscular mycorrhizal fungal phylogeny-related interactions with a non-host. Symbiosis, 53, 41–46. https://doi.org/10.1007/s13199-011-0107-5
Wagg, C., Pautler, M., Hugues, B., Massicotte, R., & Peterson, L. (2008). The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza, 18, 103–110. https://doi.org/10.1007/s00572-007-0157-y
Wang, B., Yeun, L. H., Xue, J. Y., Liu, Y, Ané, J. M., & Qiu, Y. L. (2010). Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytologist, 186, 514–525. https://doi.org/10.1111/j.1469-8137.2009.03137.x
Xiao, J. X., Hu, C. Y., Chen, Y. Y., Yang, B., & Hua, J. (2014). Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth, magnesium distribution and photosynthesis of two citrus cultivars. Scientia Horticulturae, 177, 14–20. https://doi.org/10.1016/j.scienta.2014.07.01