Differential gene expression of heat shock protein in response to thermal stress, in two Fundulus species endemic to the Gulf of Mexico


  • Norberto Alonso Colín-García Universidad Nacional Autónoma de México http://orcid.org/0000-0002-3181-0300
  • Xavier Chiappa-Carrara
  • Jorge E. Campos
  • María Leticia Arena-Ortíz
  • Luis A. Hurtado



Palabras clave:

Adaptation, Environmental variation, Global warming, Water temperature, Costal lagoons, Thermal stress


Expression of heat shock protein genes (Hsp) could be determinant for fish to survive an increase of water temperature due to global warming. Coastal lagoons, with their intrinsic high-water temperatures, test the resilience and adaptability of fish populations to environmental change. We analyze the variation in gene expression and genetic variation of 2 endemic Fundulus species in 2 lagoons to the north of the Yucatán Peninsula. We evaluated genetic distances between species using Hsp 70 gene sequences; our results showed low genetic differentiation between
both Fundulus species and also showed individuals with high genetic variability, due to non-neutral polymorphisms. Expression of 2 isoforms of Hsp70 genes was higher in F. grandissimus than in F. persimilis. These variations are prompted by water temperature and genetic differentiation of species, induced in the fish thermal stress sensitivity. Our results suggest that both species are sensitive to thermal stress; however, populations exhibit wide genetic expression range and non-neutral polymorphisms, which could be an evidence of an adaptive process to thermal stress. This capacity of the fish populations to adapt to environmental variations could be affecting fish distribution.


Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. L. and Curtis-McLane, S. (2008). Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evolutionary Applications, 1, 95–111.

Alvarez F. C. J. (2016). Habitos alimentarios de Fundulus persimilis (Miller 1955) y F. Grandissimus (Hubbs 1936) en la costa norte de Yuctán. Posgrado de Ciencias del Mar y Limnología México. Tesis de Maestría. Universidad Nacional Autónoma de México, Sisal, Yucatán.

Bonduriansky, R. and Day, T. (2009). Nongenetic inheritance and its evolutionary implications. Annual Review of Ecology, Evolution and Systematics, 40, 103-125.

Bukau. B., Horwich, A. L. (1988). The Hsp70 and Hsp60 chaperone machines. Cell., 92, 351–366. doi: 10.1016/S0092-8674(00)80928-9.

Bulger, A. J. and Tremaine, S. C. (1985). Magnitude of seasonal effects on heat tolerance in Fundulus heteroclitus. Physiol. Zool., 58, 197-204.

De Dios, C. 2014. Ecología trófica de un gremio de aves piscívoras durante la temporada de reproducción en la costa de Yucatán. Tesis de Maestría, Universidad Nacional Autónoma de México.

Dilorio, P. J., Holsinger, K., Schultz, R. J. and Hightower, L. E. (1996). Quantitative evidence that both Hsc70 and Hsp70 contribute to thermal adaptation in hybrids of the livebearing fishes Poeciliopsis. Cell Stress & Chaperones, 1, 139–147.

Fangue, N. A., Hofmeister, M., Schulte, P. M. (2006).

Intraspecific variation in thermal tolerance and heat shock gene expression in the common killifish, Fundulus heteroclitus. J. Exp. Biol., 209, 2859–2872.

Healy, T. M., and Schulte, P. M. (2012). Factors affecting plasticity in whole- organism thermal tolerance in common killifish (Fundulus heteroclitus). J. Comp. Physio. B Biochem. Syst. Environ. Physiol., 182, 49–62. doi: 10.1007/s00360-011-0595-x

Healy, T. M., Tymchuk, W. E., Osborne, E. J., and Schulte, P. M. (2010). Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches. Physiol. Genomics, 41, 171–184. doi: 10.1152/physiolgenomics.00209.2009

Herrera-Silveira, J. A., (1997). Biodiversidad de productores primarios de lagunas costeras del norte de Yucatán, México. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados-Mérida. Informe final SNIB-CONABIO proyecto No. B019. México D. F.

Hughes, L. (2000). Biological consequences of global warming: Is the signal already. Trends. Ecol. Evol., 15, 56-61.

Kiang, J.G. and Tsokos, G.C. (1998). Hsps 70 kDa: Molecular biology, biochemistry and physiology. Pharmacology & Therapeutics., 80, 183-201.

Miller, R. R. (2009). Peces dulceacuícolas de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, D.F. pp. 345

Morin, R. P. and Able, K. W. (1983). Patterns of geographic variation in the egg morphology of the fundulid fish, F. heteroclitus. Copeia, 726-740.

Oleksiak, M. F., Roach, J.L., Crawford, D.L. (2005). Natural variation in cardiac metabolism and gene expression in Fundulus heteroclitus. Nat Genet., 37, 67–72.

Page, L. M. and Burr, B. M. (2011). A field guide to freshwater fishes of North America north of Mexico. Boston : Houghton Mifflin Harcourt, 663p.

Parsell D., Lindquist S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet., 27, 437–496. 10.1146/annurev.ge.27.120193.002253

Picard, D. J. and Schulte, P. M. (2004). Variation in gene expression in response to stress in two populations of Fundulus heteroclitus. Comp. Biochem. Phys. part A: Molecular & Integrative Physiology, 137, 205–216

Rees, B. B., Andacht, T., Skripnikova, E. and Crawford, D. L. (2011). Population proteomics: quantitative variation within and among populations in cardiac protein expression. Mol. Biol. Evol., 28, 1271-1279.

Schulte, P. M., Glemet, H. C., Fiebig, A. A. and Powers, D. A. (2000). Adaptive variation in lactate dehydrogenase-B gene expres- sion: role of a stress-responsive regulatory element. Proc. Natl. Acad. Sci., 97,6597–6602.

Sorensen, J. G., Dahlgaard, J. and Loeschcke, V. (2001). Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: down regulation of Hsp70 expression and variation in heat stress resistance traits. Funct. Ecol., 15, 289 –296.

Sreedhar, A.S. and Csermely, P. P. (2004). Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy—a comprehensive review. Pharmacology and Therapeutics, 101, 227–257.

Tenorio, F. L. (2015). Hidrodinámica mareal y submareal de una laguna costera tropical. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California. Thesis

Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994).

CLUSTAL W: improving the sensitivity of progressive multiple sequence alignement through sequence weighting, positio-specific gao penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

Townsend, J. P., Cavalieri, D. and Hartl, D. L. (2003). Population genetic variation in genome-wide gene expression. Mol. Biol. Evol., 20, 955-963.

Vega-Cendejas, M. y Hernández, M. (2004). Fish community structure and dynamics in a coastal hypersline lagoon: Rio Lagartos, Yucatan, Mexico. Estuarine and Coastal Shelf Science, 60, 285-299.

White, C. N., Hightower, L. E. and Schultz, R. J. (1994). Variation in heat shock proteins among species of desert fishes (Poeciliidae, Poeciliopsis). Mol. Biol. Evol., 11, 106-119.

Whitehead, A. (2010). The evolutionary radiation of diverse osmotolerant physiologies in killifish (Fundulus sp.). Evolution, 64, 2070–85.

Whitehead, A., Pilcher, W., Champlin, D. and Nacci, D. (2012) Common Mechanism Underlies Repeated Evolution of Extreme Pollution Tolerance. Proceedings of the Royal Society B: Biological Sciences, 279, 427-433.


Archivos adicionales