Phenotypic and molecular analysis of Mexican Metarhizium anisopliae strains
DOI:
https://doi.org/10.22201/ib.20078706e.2019.90.2643Palabras clave:
Metarhizium, Sugarcane, Cattle pastures, ITS region, RAPDResumen
Metarhizium anisopliae is an anamorphic fungus widely studied due to its use as a biological control agent. In Mexico, it is mainly used as an integrated management strategy to control populations of spittlebugs (Hemiptera: Cercopidae) that affect sugarcane fields and cattle pastures. In this study, 13 strains isolated from Aeneolamia spp. (Hemiptera: Cercopidae) from the main areas of sugarcane production of Mexico and 11 reference strains of Metarhizium from different insect hosts and geographic origins were evaluated based on their conidial dimensions, thermotolerance at 15, 25, 30, and 35 ºC, random amplification of polymorphic DNA (RAPD) patterns using a combined analysis with 14 different oligonucleotides and diversity estimators, and a phylogenetic analysis with the ribosomal RNA internal transcribed spacer (ITS) region. All strains used in this study showed typical morphological characteristics corresponding to M. anisopliae and were able to grow at 25 and 30 ºC with restricted growth at low (15 ºC) and high temperatures (35 ºC). Polymorphism analysis clustered all strains from Aeneolamia sp. in one welldefined group with low variability among them. Phylogenetic relationships based on nuclear ribosomal ITS region sequences recovered a subclade within M. anisopliae formed by 10 of the Mexican strains.
Citas
Allnut, T.R., Newton, A.C., Lara, A., Premoli, A., Armesto, J.J., Vergara, R. y Gardner, M. (1999). Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Molecular Ecology, 8, 975-987.
Amos, W. y Harwood, J. (1998). Factors affecting levels of genetic diversity in natural populations. Philosophical Transactions of the Royal Society of London. Series B, 1366, 177-186.
Bidochka, M.J., Kamp, M.A., Lavendar, M.T., Dekoning, J. y Amritha De Croos. J.N. (2001). Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae : Uncovering cryptic species ? Applied Environmental Microbiology, 67, 1335–1342.
Bidochka, M.J., McDonald, M.A., St. Leger, R.A. y Roberts, D.W. (1993). Differentiation of species and strains of entomopathogenic fungi by Random Amplified Polymorphic DNA (RAPD). Current Genetics, 21, 107-113.
Bischoff, J.F., Rehner, S.A. y Humber, R.A. (2009). A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, 101, 512–530.
Brunner-Mendoza, C., Moonjely, S., Reyes-Montes, M.R., Toriello, C. y Bidochka, M.J. (2017). Physiological and phylogenetic variability of Mexican Metarhizium strains. BioControl, 62, 779-791.
Cobb, B.D. y Clarkson, J.M. (1994). A simple procedure for optimizing the Polymerase Chain Reaction (PCR) using modified Taguchi methods. Nucleic acids research, 18, 3801-3805.
Cooney, D.G. y Emerson, R. (1964). Thermophilic fungi: An account of their biology, activities and classification. Freeman, W.H. and Co. (Eds.), San Francisco and London.
Cuadros-Orellana, S., Rabelo-Leite, L., Smith, A., Medeiros, J.D., Badotti, F., Fonseca, P.L.C., Vaz, A.B.M., Oliveira, G. y Góes-Neto, A. (2013). Assessment of Fungal Diversity in the Environment using Metagenomics: A Decade in Review. Fungal Genomics & Biology , doi:10.4172/2165-8056.1000110
Curran, J., Driver, F., Ballard, J.W.O. y Milner, R.J. (1994). Phylogeny of Metarhizium: Analysis of ribosomal DNA sequence data. Mycological Research, 98, 547–552.
Driver, F., Milner, R.J. y Trueman, J.W.H. (2000). A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycological Research, 104, 134-150.
Fegan, M., Manners, J.M., Maclean, D.J., Irwin, J.A.G., Samuels, K.D.Z., Holdom, D.G. y Li, D.P. (1993). Random amplified polymorphic DNA markers reveal a high degree of genetic diversity in the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. Journal of General Microbiology, 13, 2075-2081.
Fernandes, E.K.K., Keyser, C.A., Chong, J.P., Rangel, D.E.N., Miller, M.P. y Roberts, D.W. (2009). Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. Journal of Applied Microbiology, 108, 115-128.
Fungaro, F.H.P., Vieira, M.L.C., Pizzirani-Kleiner, A.A. y de Azevedo, J.L. (1996). Diversity among soil and insect strains of Metarhizium anisopliae var. anisopliae detected by RAPD. Letters in Applied Microbiology, 2, 389-392.
Goettel, M.S. y Inglis, D. Fungi: Hyphomycetes. En: Lacey L.A. (Ed.), Manual of Techniques in Insect Pathology, pp. 213-248, USA: Academic Press.
Hawksworth, D.L. (1991). The fungal dimension of biodiversity: magnitude. Significance, and conservation. Mycological Research, 95, 641-655.
Huelsenbeck, J.P. y Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England), 17, 754–755.
Joshi, S.P., Gupta, V.S., Agarwal, R.K., Ranjekar, P.K. y Brar, D.S. (2000) Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theoretical and Applied Genetics, 100,1311-1320.
Kumari, N. y Thakur, K.S. (2014). Randomly amplified polymorphic DNA-A brief review. American Journal of Animal and Veterinary Sciences, 9, 6-13.
Nirmaladevi, D., Venkataramana, M., Srivastava, R.K., Uppalapati, S.R., Gupta, V.K., Yli-Mattila, T., Tsui, K.M.C., Srinivas, C., Niranjana, S.R. y Chandra, N.S. (2016). Molecular phylogeny, pathogenicity and toxigenicity of Fusarium xysporum F. Sp. Lycopersici. Scientific Reports, 6, 21367.
Paelowska, T.E. y Taylor, J.W. (2004). Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature, 427, 733-737.
Raja, H.A., Miller, A.N., Pearce, C.J. y Oberlies, N.H. (2017). Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. Journal of Natural Products, 80, 756-770.
Rangel, D.E.N., Fernandes, K.K., Dettenmaier, S.J. y Roberts, D.W. (2010). Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress. Journal of Basic Microbiology, 50, 344–350.
SAGARPA. (2016) http://www.sagarpa.gob.mx/quienesomos/datosabiertos/conadesuca/Paginas/default.aspx
Real, R. y Vargas, J.M. (1996). The probabilistic basis of Jaccard’s index of similarity. Systematic Biology, 45, 380-385.
Rezende, J.M., Riguetti Zanardo, A.B., Lopes, M.S., Delalibera, I. y Rehner, S.A. (2015) Phylogenetic diversity of Brazilian Metarhizium associated with sugarcane agriculture. BioControl, 60, 495-505.
Rholf, F.J. (1993). NTSYS-pc. Numerical taxonomy and multivariate analysis system version 2.02e. Exeter Sofware. USA ,New York.
Rozas, J., Sanchez-DeIBarrie, J.C., Messeguer, X. y Rozas, R. (2003). DNASP: DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496–2497.
Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A. y Chen, W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as universal DNA barcode marker for fungi. Proceedings of the National Academy Sciences USA, 109, 6241–6246.
Skoneczny, D., Oskiera, M., Szczech, M., Bartoszewski, G. (2015). Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiologica, 60, 297–307.
Sneath, P.H.A. y Sokal, R.R. (1973). Taxonomic structure. En: Freeman, W.H. (ed.) Numerical Taxonomy. pp.188-305. USA.