Influence of natural tail streamer asymmetry and tail length on annual apparent survival of adult Magnificent Frigatebird (Fregata magnificens)

Autores/as

  • Mónica González-Jaramillo Investigación y Soluciones Socioambientales, A.C. Pedro Moreno 147, Colonia San José, Campeche, Campeche, 24040, México
  • José Luis Rangel-Salazar Departamento de Ecología y Sistemática Terrestres. El Colegio de la Frontera Sur, Apartado Postal 63, San Cristóbal de las Casas, 29290, Chiapas, México
  • Horacio de la Cueva CICESE http://orcid.org/0000-0002-5280-6458

DOI:

https://doi.org/10.22201/ib.20078706e.2019.90.2626

Palabras clave:

Aerodynamic cost, External rectrices, Seabird, Survival modelling

Resumen

Flight traits mediated by symmetry should be constrained by mechanical or aerodynamic effects. Natural asymmetry and external tail feather length could have unfavorable effects on aerodynamic performance and affect the survival of highly aerial birds. The Magnificent Frigatebird, Fregata magnificens, is a long-lived, highly aerial seabird with a deeply forked tail, and an extraordinary division of labor between sexes. Its flight pattern is soaring and dynamic, it also has fast active flight and acrobatic maneuvers. We explore the possible effect of tail streamer asymmetry and tail length on annual apparent survival of Magnificent Frigatebirds by using 6 years (2000-2005) of capture-mark-resighting of live-encounter data analysis. Male frigatebirds showed significant differences between left and right tail streamer length, and tail asymmetry differences between sexes. Models did not find a clear effect of tail streamer asymmetry and tail length, as individual covariates, on annual apparent survival by sex. Natural variation in a secondary sexual trait like those explored here likely does not affect apparent survival. Life-history strategies such as flight pattern, breeding behavior, and tail moult may constrain any negative effects. Longer mark-resighting studies and additional modelling could answer conclusively the association between survival and flight traits in Magnificent Frigatebirds.

Biografía del autor/a

Horacio de la Cueva, CICESE

Investigador Titular C

Depto. de Biología de la Consevación

Citas

Arroyo, B., Mínguez, E., Palomares, L. and Pinilla, J. (2004). The timing and pattern of moult of flight feathers of European Storm-petrel Hydrobates pelagicus in Atlantic and Mediterranean breeding areas, Ardeola, 51, 365-373.

Balmford, A., Jones, I. L. and Thomas, A. L. R. (1993). On avian asymmetry: selection for symmetrical tails and wings in birds. Proceedings of the Royal Society of London Series B, 252, 245-251.

Bridge, E. S. (2006). Influences of morphology and behavior on wing-moult strategies in seabirds. Marine Ornithology, 34, 7-19.

Blake, R.W., Kolotylo, R, and de la Cueva, H. (1990). Flight speeds of the barns swallow (Hirundo rustica). Canadian Journal of Zoology, 68, 1-5.

Burnham, K. P. and Anderson, D. R. (1998). Model Selection and Inference: A practical information-theoretic approach. Springer-Verlag, New York, New York.

Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference, A practical Information-Theoretic Approach. 2nd edn. Springer, Berlin.

Cooch, E. and White, G. (2014). Program MARK, a gentle introduction. 13th Edition. Downlodaded from http://www.phidot.org/software/mark/docs/book/ on 1/10/ 2014.

Cone Jr, C. D. (1964). A mathematiccal analysis of the dynamic soaring flight of the albatross with ecological interpetations. Virginia Institute of Marine Sciences Special Scientific Report. No. 50.

Cuervo J. J., Møller, A. P. and de Lope, F. (2002). Experimental manipulation of tail length in female Barn Swallows (Hirundo rustica) affects their future reproductive success. Behavioural Ecology, 14, 451-456.

Diamond, A.W. and Schreiber, E. A . (2002). Magnificent Frigatebird (Fregata magnificens). In Poole, A. (ed.). The Birds of North America Online. Ithaca: Cornell Lab of Ornithology. Downloaded from : http://bna.birds.cornell.edu/bna/species/601 doi:10.2173/bna.601

Drummond, H., Macías, C., Valiente-Baunet, A. and Osorno, J. L. (2000). Isla Isabel. Pp. 41. In: del Coro-Arizmendi, M. and Márquez-Valdemar, L. (eds.) Áreas de importancia para la conservación de las aves en México. CIPAMEX, CONABIO, FMCN, CCA. México, DF.

Evans, M. R. (1998). Selection on swallow tail streamers. Nature, 394, 233-234.

Evans, M. R. (1999). Length of tail streamers in Barn Swallows. Nature, 397, 115.

Evans, M. R., Martins, T .L. F. and Haley, M. (1994). The asymmetrical cost of tail elongation in Red-billed Streamertails. Proceedings of the Royal Society of London Series B, 256, 97-103.

González, M. and de la Cueva, H. (2007). Apparent survival of adult Magnificent Frigatebirds in the breeding colony of Isla Isabel, Mexico. Waterbirds, 30, 73-79.

González-Jaramillo, M. and de la Cueva, H. (2010). Natural tail streamer asymmetry in male Magnificent Frigatebirds Fregata magnificens: influence on mate selection and male parental care performance. Marine Ornitholology, 38, 85-90.

González-Jaramillo, M. and de la Cueva, H. (2012). Influencia de la asimetría de las rectrices exteriores en la eficiencia de vuelo del Rabihorcado (Fregata magnificens). Huitzil, 13, 6-16.

González-Jaramillo, M., Rangel-Salazar, J. L. and de la Cueva, H. (2010). Annual apparent survival rates of immature Magnificent Frigatebirds in a large breeding colony in Western Mexico. Waterbirds, 33, 518-526.

Hagen, C. A., Pitman, J. C., Sandercock, B. K., Robel, R. J. and Applegate, R. D. (2005). Age-specific variation on apparent survival rates of male Lesser Prairie-Chickens. Condor 107, 78-86.

Harrison, P. (1983). Seabirds: An Identification Guide. China: Houghton Mifflin Co.

Hedenström, A. (1993). Migration by soaring or flapping flight in birds: the relative importance of energy cost and speed. Philosophical Transactions of the Royal Society of London Series B, 342, 353-361.

Houston, D. C. (1975). The moult of the white-backed and Rüpell´s vultures Gyps africanus and G. reppellii. Ibis, 117, 474-488.

Kochan, J. B. (1996). Birds, Wings and Tails. Stackpole Books. Pennsylvania, USA.

Lebreton, J. D., Burnham, K. P., Clobert, J. and Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs, 62, 67-118.

Madsen, V. (2005). Female mate choice in the Magnificent Frigatebird (Fregata magnificens). PhD Thesis, Universidad Nacional Autónoma de México.

Madsen, V., Dabelsteen,T., Osorio, D. and Osorno, J. L. (2007). Morphology and ornamentation in Male Magnificent Frigatebirds: variation with age class and mating status. American Naturalist, 169, S93-S111.

Møller, A. P. (1990). Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Animal Behaviour, 40, 1185-1187.

Møller, A. P. (1991). Sexual ornament size and the cost of fluctuating asymmetry. Proceedings of the Royal Society of London Series B, 234, 59-62.

Møller, A. P. (1992). Female swallow preference for symmetrical male sexual ornaments. Nature, 375, 238-240.

Møller, A. P. and Höglund, J. 1991. Patterns of fluctuating asymmetry in avian feather ornaments: implications for models of sexual selection. Proceedings of the Royal Society of London Series B, 245, 1-5.

Norberg, R. A. (1994). Swallow tail streamer is a mechanical device for self-deflection of tail leading edge, enhancing aerodynamic efficiency and flight manoeuvrability. Proceedings of the Royal Society of London Series B, 257, 227-233.

Norberg, U. M. (1990). Vertebrate Flight. Berlin: Springer-Verlag.

Osorno, J. L. (1996). Evolution of breeding behavior in the Magnificent Frigatebird: copulatory pattern and parental investment. PhD Thesis, University of Florida.

Osorno, J. L. (1999). Offspring desertion in the Magnificent Frigatebrid: are males facing a trade- off between current and future reproduction? Journal of Avian Biology, 30, 335-341.

Osorno, J. L. and Székely, T. (2004). Sexual conflict and parental care in Magnificent Frigatebirds: full compensation by deserted females. Animal Behaviour, 68, 337-342.

Palmer, A. R. and Strobeck, C. (1986). Fluctuating asymmetry: measurement, analysis, pattern. Annual Review of Ecology and Systematics, 17, 391-421.

Pennycuick, C. J. (1983). Thermal soaring compared in three dissimilar tropical bird species, Fregata magnificens, Pelecanus occidentalis, and Coragyps atratus. Journal of Experimental Biology, 102, 307-325.

Pennycuick, C. J. (2008). Modelling the Flying Bird. Amsterdam: Elsevier.

Pryke, S. R. and Andersson, S. (2005). Experimental evidence for female choice and energetic costs of male tail elongation in Red-collared Widowbirds. Biological Journal of the Linnean Society, 86, 35-43.

Rayleigh, L. (1883). The soaring flight of birds. Nature, 27, 534-535.

Sandercock, B. K., Székely, T. and Kosztolányi, A. (2005). The effects of age and sex on the apparent survival of Kentish Plovers breeding in southern Turkey. Condor, 107, 582-595.

Sapir, N., Horvitz, N., Wikelski, M., Avissar, R., Mahrer, Y. and Nathan, R. (2011). Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode. Philosophical Transactions of the Royal Society of London Series B, 278, 3380-3386.

Shnell, G. D. (1974). Flight speeds and wingbeat frequencies of the Magnificent Frigatebird. Auk, 91, 564-570.

Swaddle, J. P. (1999). Limits to length asymmetry detection in Starlings: implications for biological signaling. Philosophical Transactions of the Royal Society of London Series B, 266, 1299-1303.

Thomas, A. L. R. (1993a). On the aerodynamics of birds’ tails. Philosophical Transactions of the Royal Society of London Series B, 340, 361-380.

Thomas, A. L. R. (1993b). The aerodynamic costs of asymmetry in the wings and tail of birds: asymmetric birds can’t fly round tight corners. Proceedings of the Royal Society of London Series B, 254, 181-189.

Weimerskirch, H., Chastel, O., Barbraud, C. and Tostain, O. (2003). Frigatebirds ride high on thermals. Nature, 421, 333-334.

Weimerskirch H., Le Corre, M., Marsac, F., Barbraud, C., Tostain, O. and Chastel, O. (2006). Postbreeding movements of frigatebirds tracked with satellite telemetry. Condor 108, 220-225.

White, G. C. and Burnham, K. P. (1999). Program MARK: survival estimation from populations of marked animals. Bird Study, 46, S120-S139.

Descargas

Publicado

2019-03-04

Número

Sección

ECOLOGÍA