Caracterización del dimorfismo sexual y reconocimiento de machos dimórficos en el complejo Discocyrtus prospicuus (Arachnida: Opiliones: Gonyleptidae): una aproximación desde la morfometría geométrica
DOI:
https://doi.org/10.22201/ib.20078706e.2021.92.3545Palabras clave:
Morfotipos, Pecilandria, Tamaño centroide, Conformación, Escudo dorsal, Coxa IVResumen
El notable dimorfismo sexual característico de la familia Gonyleptidae (Opiliones), así como la existencia de morfotipos discretos en machos respecto del tamaño corporal y la armadura, han merecido diversos análisis por varios autores, utilizando morfometría lineal. En este trabajo se propone la aplicación de técnicas de morfometría geométrica para analizar la variabilidad en tamaño centroide y conformación del escudo dorsal y coxa IV de machos del complejo
Discocyrtus prospicuus (Gonyleptidae), a fin de evaluar la existencia de morfotipos discretos y la influencia del factor geográfico sobre dicha variabilidad. Asimismo, se apunta a caracterizar el dimorfismo sexual con base en los mismos caracteres. Se analizaron 113 individuos (58 machos y 55 hembras), provenientes de 11 localidades de 3 provincias
argentinas. Los resultados muestran que el dimorfismo sexual afecta tanto al tamaño como la conformación de las 2 estructuras medidas (coxas IV y escudo dorsal), aunque ocurriendo en distinto sentido. Por su parte, los machos evidenciaron 2 subgrupos separados en cuanto a tamaño centroide de coxas y escudo, aunque con leves diferencias
según el origen geográfico. Se describe por primera vez la existencia de subgrupos relacionados a tamaño centroide también para hembras. Estos resultados constituyen un avance en la comprensión de la ocurrencia de dimorfismos y las variaciones geográficas asociadas con esta variación.
Citas
Acosta, L. E. (1999). New synonyms in the genera Discocyrtus
and Pachyloides (Opiliones, Gonyleptidae, Pachylinae). The
Journal of Arachnology, 27, 465–469.
Acosta, L. E. (2002). Patrones zoogeográficos de los opiliones
argentinos (Arachnida: Opiliones). Revista Ibérica de
Aracnología, 6, 69–84.
Acosta, L. E. y Guerrero, E. L. (2011). Geographical distribution
of Discocyrtus prospicuus (Arachnida: Opiliones:
Gonyleptidae): Is there a pattern? Zootaxa, 3043, 1 – 24.
http://dx.doi.org/10.11646/zootaxa.3043.1.1
Acosta, L. E., Pérez-González, A. y Tourinho, A. L. (2007).
Methods for taxonomic study. En R., Pinto-da-Rocha, G.
Machado y G. Giribet (eds.), Harvestmen: the biology of
opiliones (pp. 494–505). Harvard University Press.
Álvarez, V. B. (2017). Competencia y elección entre sexos en
animales. La Habana: Editorial Científico-Técnica.
Andersson, M. B. (1994). Sexual selection. Princeton University
Press.
Bechara, W.Y. y Liria, J. (2012). Morfometría geométrica en cinco
especies de Buthidae y Scorpionidae (Arachnida: Scorpiones) de Venezuela. Revista Mexicana de Biodiversidad, 83, 421–
http://dx.doi.org/10.22201/ib.20078706e.2012.2.954
Bookstein, F. (1991). Thin-plate splines and the atlas problem for
biomedical images. En A. C. F. Colchester y D. J. Hawkes
(Eds.), Information processing in medical imaging (pp. 326–
. Wye: Springer. http://dx.doi.org/10.1007/BFb0033763
Buzatto, A. B. (2012). The evolution of male dimorphism in
arthropods (Tesis). Universidad of Western, Australia.
Buzatto, B. A., Tomkins, J. L., Simmons, L. W. y Machado, G.
(2014). Correlated evolution of sexual dimorphism and male
dimorphism in a clade of Neotropical harvestmen. Evolution,
, 1671–1686. http://dx.doi.org/10.1111/evo.12395
Capocasale, R. (1966). Opiliones del Uruguay. Discocyrtus
prospicuus Holmberg, el alotipo hembra dePygophalangodus
gemignanii uruguayensis Ringuelet (Gonyleptidae)
y Metalibitia rosascostai sp. nov. (Cosmetidae). Bulletin du
Muséum National D’Histoire Naturelle, 37, 631–644.
Caro-Riaño, H., Jaramillo, N. y Dujardin, J. P. (2009). Growth
changes in Rhodnius pallescens under simulated domestic
and sylvatic conditions. Infection, Genetics and Evolution,
, 162–168. https://doi.org/10.1016/j.meegid.2008.10.009
Carvalho, L. S., Candiani, D. F., Bonaldo, A. B., Suesdek, L.
y Silva, P. R. R. (2010). A new species of the sun-spider genus Mummucia (Arachnida: Solifugae: Mummucidae)
from Piauí, northeastern Brazil. Zootaxa, 2690, 19–31. http://
dx.doi.org/10.11646/zootaxa.2690.1.2
Clutton-Block, T. (2017). Reproductive competition and sexual
selection. Philosophical Transactions of the Royal Society B,
, 1471–2970. http://doi.org/10.1098/rstb.2016.0310
Crews, S. C. y Hedin, M. (2006). Studies of morphological
and molecular phylogenetic divergence in spiders
(Araneae: Homalonychus) from the American southwest,
including divergence along the Baja California Peninsula.
Molecular Phylogenetics and Evolution, 38, 470–487.
https://doi.org/10.1016/j.ympev.2005.11.010
Darwin, C. (1871). The descent of man and selection in relation
to sex. London: John Murray. http://dx.doi.org/10.5962/bhl.
title.121292
Delph, L. F. (2005). Procesos que limitan y facilitan la evolución
del dimorfismo sexual. The American Naturalist, 166, S1–S4.
Dujardin, J. P. (2008). Morphometrics applied to medical
entomology. Infection, Genetics and Evolution, 8, 875–890.
https://doi.org/10.1016/j.meegid.2008.07.011
Dujardin, J. P. (2011). Modern morphometrics of
medically important insects. Genetics and Evolution of
Infectious Disease, 473–501. https://doi.org/10.1016/
B978-0-12-384890-1.00016-9
Dujardin, J. P. y Slice, D. (2007). Geometric morphometrics.
Contributions to medical entomology. En M. Tibayrenc (Ed.),
Encyclopedia of infectious diseases. Modern methodologies
(pp. 435-447). Montpellier, France: Wiley & Sons.
Emlen, D. J., Lavine, L. C. y Ewen-Campen, B. (2007). On
the origin and evolutionary diversification of beetle horns.
Proceedinngs of the National Academy of Sciences, 104,
–8668. https://doi.org/10.1073/pnas.0701209104
Fairbairn, D. J. (2005). Allometry for sexual size dimorphism:
testing two hypotheses for Rensch’s rule in the water
strider Aquarius remigis. The American Naturalist, 166, 69–
https://doi.org/10.1086/444600
Gadgil, M. (1972). Male dimorphism as a consequence of sexual
selection. The American Naturalist, 106, 574–580. http://
dx.doi.org/10.1086/282797
Gnaspini, P., Da Silva, M. B. y Pioker, F. C. (2004). The
occurrence of two adult instars among Grassatores
(Arachnida: Opiliones) —a new type of life-cycle in
arachnids. Invertebrate, Reproduction & Development, 45,
–39. https://doi.org/10.1080/07924259.2004.9652571
Gotoh, H., Miyakawa, H., Ishikawa, A., Ishikawa, Y., Sugime, Y.
y Emlen, D. J. (2014). Developmental link between sex and
nutrition; doublesex regulates sex-specific mandible growth
via juvenile hormone signaling in stag beetles. Plos Genetics,
, e1004098. https://doi.org/10.1371/journal.pgen.1004098
Gross, M. R. (1996). Alternative reproductive strategies
and tactics: diversity within sexes. Trends in Ecology &
Evolution, 11, 92–98. https://doi.org/10.1016/07(96)81050-0
Hallson, L. R. y Bjӧrklund, M. (2012). Selection in a fluctuating
environment leads to decreased genetic variation and
facilitates the evolution of phenotypic plasticity. Journal of Evolutionary Biology, 25, 1275–1290. https://doi.
org/10.1111/j.1420-9101.2012.02512.x
Hernández, M. L., Abrahan, L., Dujardin, J. P., Gorla, D. E.
y Catalá, S. (2011). Phenotypic variability and population
structure of peridomestic Triatoma infestans in rural areas of
arid Chaco (western Argentina): spatial influence of macro
and microhabitats. Vector Borne and Zoonotic Disease, 11,
–513. https://doi.org/10.1089/vbz.2009.0253
Hernández, M. L., Amelotti, I., Catalá S. S. y Gorla, D.E. (2018).
Does nutrition influence sexual dimorphism in Triatoma
infestans (Hemiptera: Reduviidae) of natural habitats?.
Revista de la Sociedad Entomológica Argentina, 77, 1–8.
https://doi.org/10.25085/rsea.770101
Hernández, M. L., Dujardin, J .P., Gorla, D. E. y Catalá, S. S.
(2013). Potential sources of Triatoma infestans reinfesting
peridomicilies identified by morphological characterization
in Los Llanos, La Rioja, Argentina. Memerias do Instituto
Oswaldo Cruz, 107, 91–97. http://dx.doi.org/10.1590/
S0074-02762013000100015
Hernández, M. L., Dujardin, J. P., Gorla, D. E. y Catalá, S. S.
(2015). Can body traits, other than wings, witness the flight
ability of Triatominae bugs, vectors of Chagas disease ?.
Revista da Sociedade Brasileira de Medicina Tropical, 48,
-691. https://doi.org/10.1590/0037-8682-0249-2015
Hernández, M. L., Espinoza, J., Bustamante-Gomez, M. y
Gorla, D. E. (2020). Morphological changes associated
with brachypterous Triatoma guasayana (Hemiptera,
Reduviidae) and their relationship with flight. International
Journal of Tropical Insect Science, 40, 413–421. https://doi.
org/10.1007/s42690-019-00092-9
Kury, A. B. (2003). Annotated catalogue of the Laniatores of
the New World (Arachnida, Opiliones). Revista ibérica de
aracnología, 7, 5–337.
Kury, A. M. y Medrano, M. (2016). Review of terminology
for the outline of dorsal scutum in Laniatores (Arachnida,
Opiliones). Zootaxa, 4097, 130–134. https://doi.
org/10.11646/zootaxa.4097.1.9
Kury, A. B. y Pinto-da Rocha, R. (2007).Gonyleptidae Sundevall,
En R. Pinto-da Rocha, G. Machado y G. Giribet (Eds.),
Harvestmen: the biology of opiliones (pp. 196–203). Harvard
University Press.
Lande, R. (1980). Sexual dimorphism, sexual selection and
adaptation in polygenic characters. Evolution, 34, 292–305.
http://dx.doi.org/10.2307/2407393
Lavine, L., Gotoh, H., Brent, C. S., Dworkin, I. y Emlen, D. J.
(2015). Exaggerated trait growth in insects. Annual Review
of Entomology, 60, 453–472. http://dx.doi.org/10.1146/
annurev-ento-010814-021045
Lavine, L. C. y Miura, T. (2014). Developmental link between
sex and nutrition; doublesex regulates sex-specific mandible
growth via juvenile hormone signaling in stag beetles. Plos
Genetics, 10, e1004098. http://dx.doi.org/10.1371/journal.
pgen.1004098
Marlowe, M. H., Murphy, C. A. y Chatzimanolis, S. (2015).
Sexual dimorphism and allometry in the sphecophilous rove beetle Triacrus dilatus. PeerJ, 3, e1123. https://doi.
org/10.7717/peerj.1123
McCullough, E. L., Ledger, K. J., O´Brien, D. M. y Emlen, D. J.
(2015). Variation in the allometry of exaggerated rhinoceros
beetle horns. Animal Behaviour, 109, 133–140. https://doi.
org/10.1016/j.anbehav.2015.08.013
Painting, C., Probert, A., Townsend, D. y Holwell, G. I. (2015).
Multiple exaggerated weapon morphs: a novel form of male
polymorphism in harvestmen. Scientifics Reports, 5, 16368.
https://doi.org/10.1038/srep16368
Petrie, M. (1992). Are all secondary sexual display structures
positively allometric and, if so, why?. Animal Behaviour, 43,
–175. http://dx.doi.org/10.1016/S0003-3472(05)80087-9
Pianka, E. R. (1982). Ecología evolutiva. Barcelona: Ediciones
Omega, S.A.
Powell, E. C., Painting, C. J., Hickey, A. J. y Holwell, G. I.
(2020). Defining an intrasexual male weapon polymorphism
in a New Zealand harvestman (Opiliones: Neopilionidae)
using traditional and geometric morphometrics. Biological
Journal of the Linnean Society, 130, 395–409. https://doi.
org/10.1093/biolinnean/blaa040
Pretorious, E. (2005). Using geometric morphometrics
to investigate wing dimorphism in males and
females of Hymenoptera –a case study based on the
genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae).
Australian Journal of Entomology, 44, 113–121.https://doi.
org/10.1111/j.1440-6055.2005.00464.x
Regalin, R. (1997). Le Tituboea descritte da Baly in ‘Phytophaga
Malayana’, 1865-1867 (Coleoptera Chrysomelidae).
Bollettino della Società Entomologica Italiana, 129, 109–117.
Rensch, B. (1950). Die abhangigkeit der relativen sexual differenz
von der korpengrösse. Bonner Zoologische Beitrage, 1, 58–69.
Rensch, B. (1960). Evolution above the species level. New York:
Columbia University Press.
Ringuelet, R. A. (1959). Los arácnidos argentinos del Orden
Opiliones. Revista del Museo Argentino de Ciencias
Naturales, C. Zool., 5, 127–439.
Rohlf, F. J. (1999). Shape statistics: procrustes superimpositions
and tangent spaces. Journal of Classification, 16, 197–223.
https://doi.org/10.1007/s003579900054
Sasakawa, K. (2016). Utility of geometric morphometrics for
inferring feeding habit from mouthpart morphology in insects:
tests with larval Carabidae (Insecta: Coleoptera). Biological
Journal of the Linnean Society, 118, 394–409. https://doi.
org/10.1111/bij.12727
Shuster, S. M. y Wade, M. J. (2003). Mating systems and
strategies. New Jersey: Princeton University Press. http://
dx.doi.org/10.1515/9780691206882
Taborsky, M., Oliveira, F. R. y Brockmann, H. J. (2008).
The evolution of alternative reproductive tactics:
concepts and questions. En R. Oliveira, M. Taborsky
y H. J. Brockmann,(Eds.), Alternative reproductive
tactics: an integrative approach (pp. 1–21). Cambridge:
Cambridge University Press. https://doi.org/10.1017/
CBO9780511542602.002
Vera-Cano, D. A., Álvarez, H. A. y Morón, M. A. (2017).
Positive allometry of horns in the rhinoceros beetle
Golofa xiximeca does not follow breaking-point patterns.
Southwestern Entomologist, 42, 933–940. https://doi.
org/10.3958/059.042.0412
Willemart, R. H., Osses, F., Chelini, M. C., Macías-Ordoñez,
R. y Machado, G. (2009). Sexually dimorphic legs in a
neotropical harvestman (Arachnida, Opiliones): Ornament
or weapon?. Behavioural Processes, 80, 51–59. https://doi.
org/10.1016/j.beproc.2008.09.006
Zatz, C., Werneck, R. M., Macías-Ordóñez, R. y Machado, G.
(2011). Alternative mating tactics in dimorphic males of the
harvestman Longiperna concolor (Arachnida: Opiliones).
Behavioral Ecology Sociobiology, 65, 995–1005. https://doi.
org/10.1007/s00265-010-1103-0
Zelditch, M. L., Swiderski, D. L., Sheets, H. D. y Fink, W. L.
(2004). Geometric morphometrics for biologist: a primer.
San Diego: Elsevier Academic Press.