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Abstract
Bathomorphi is a diverse lineage, accounting for more than half of the chondrichthyan diversity. Yet, more than 

12.3% of the species are in the “deficient data” category of the IUCN Red List of Threatened Species, indicating a gap 
in the knowledge of this group. In the present study, the diet and morphological variation associated with locomotion 
(disc) and feeding (Meckel’s cartilage and teeth) of 9 species of batomorphs were analyzed to assess trophic and 
morphological diversity, size, and sexual dimorphism. Comparative phylogenetic methods were used to determine 
the evolutionary relationship between variables. According to our results, the species selected showed a wide and 
intricate morphological variation. Sexual dimorphism was mainly observed in tooth morphology, where males tended 
to have more pointed teeth than females. Disc allometry was recorded for most species; small specimens presented 
a longer snout than larger specimens. Only the Meckel’s cartilage was related to the diet of the species. However, 
the morphological variation of the disc, Meckel’s cartilage, and teeth of the batomorphs were correlated through the 
evolution of the group and responded to functional patterns such as swimming and feeding, which finally, determined 
the ecology of the species.
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Resumen
Bathomorphi es un linaje diverso, representa más de la mitad de la diversidad condrictios. El 12.3% de las 

especies se encuentran en la categoría “datos deficientes” de la Lista Roja, lo que indica un vacío en el acervo de 
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Introduction 

Bathomorphi is a diverse monophyletic lineage 
comprising around 689 species, representing more than 
half of the chondrichthyan diversity (Ehemann et al., 
2018; Last et al., 2016; Nelson, 2016; Serena et al., 2020; 
Weigmann, 2016). Yet, approximately 36% of batomorphs 
are listed by the IUCN Red List of Threatened Species 
in endangered categories (i.e., critically endangered, 
endangered, and vulnerable) and more than 12.3% of 
the total are in the category deficient data (Dulvy et al., 
2014, 2021; IUCN, 2020; Last et al., 2016), indicating 
the lack of knowledge in this diverse group. Rays are 
endangered by a variety of threats and as a predatory, 
opportunistic, forager group in complex food webs, the 
reduction of the batomorphs populations can impact and 
alter the functioning of ecosystems (Dulvy & Reynols, 
2002; Graham et al., 2001).

The general body plan of batomorphs includes 
dorsoventrally flattened bodies, enlarged pectoral fins 
connected to the head, and ventrally located gill slits 
(Ebert & Winton, 2010; McEachran & de Carvalho, 2002); 
however, within this basic shape this group shows diverse 
morphologies and sizes (Compagno, 1999; Rosenberger, 
2001). Its interspecific and intraspecific variations are 
related to ecological and phylogenetic patterns (Ekstrom 
& Kajiura, 2013; Franklin et al., 2014). The interspecific 
variations of the disc, ranging from rhomboidal to circular, 
were found to be related to locomotion and habitat use 
(Ekstrom & Kajiura, 2013; Franklin et al., 2014; Parson 
et al., 2011). While intraspecific variation in tooth shape 
was related to sexual dimorphism (Feduccia & Slaughther, 
1974; Navarro-González et al., 2018; Sáez & Lamilla, 
2004). In general, morphological variation in teeth was 
related to the diet of the species; however, males also use 
their more pointed teeth to hold onto the female during 
mating (Kajiura & Tricas, 1996).

In fish species, body shape is important in determining 
swimming performance (Aguilar-Medrano et al., 2013; 

Fulton, 2007; Wainwright et al., 2002). However, a number 
of other aspects of the organism’s function were also 
linked to its morphology, such as diet and reproduction, 
and therefore could also interact with the evolution of 
locomotor capacities (Collar et al., 2008). Because the 
phenotypic and trophic variation of the species has 
been used to lay the basis to determine their functional 
relationships (Aguilar-Medrano et al., 2019; Braga et al., 
2012; Fabre et al., 2016; Lobato et al., 2014; Losos, 2009; 
Price et al., 2010), in the present study, the morphological 
variation of the disc and feeding structures, as well as 
trophic data of 9 species of Bathomorphi were analyzed 
and phylogenetic comparative methods were used to 
determine whether the morphological variation is related 
to the trophic ecology of the group. Finally, because 
the locomotor system in fish is conditioned by factors 
linked to the ecological mechanisms and responsible for 
their evolution, we expected that disc shape would be 
phylogenetically related to feeding structures (Meckel’s 
cartilage —MC from now on—, and teeth) of the species 
here analyzed (Langerhans & Reznick, 2010).

Materials and methods

Specimens used in this study (Table 1) were obtained 
from the Ichthyological Collection of the Center for Research 
and Advanced Studies of the National Polytechnic Institute 
(CINV-NEC), Merida, Mexico. No living specimens were 
collected or killed during this study. The study followed 
the protocols of use and management of organisms of the 
ichthyological collection, which operates according to the 
national protocols of the Ministry of Environment and 
Natural Resources (Semarnat).

The selection of species was based on taxonomy, 
trying to have the broadest taxonomic representation, 
and on the availability of specimens in the Ichthyological 
Collection for morphometric analyses and mandibular 
bone extraction. Nine species representing the 4 orders of 
batomorphs were analyzed (Last et al., 2016). From the 

conocimientos de este grupo. En el presente estudio, la dieta y variación morfológica asociada a la locomoción (disco) 
y alimentación (cartílago de Meckel y dientes) de 9 batomorfos fueron analizadas para evaluar la diversidad trófica 
y morfológica, la talla, y el dimorfismo sexual. La relación evolutiva de las variables se analizó mediante métodos 
filogenéticos comparativos. Las especies analizadas mostraron una variación morfológica amplia e intrincada. Se 
observó dimorfismo sexual en la morfología de los dientes, donde los machos tienen dientes más puntiagudos que las 
hembras. Se registró alometría en el disco en la mayoría de las especies. Los especímenes pequeños presentaron un 
hocico más largo que los grandes. El cartílago de Meckel estuvo relacionado con la dieta. La variación morfológica 
del disco, el cartílago de Meckel y los dientes se correlacionaron a través de la evolución del grupo y respondieron a 
patrones funcionales como la natación y alimentación, que finalmente determinaron la ecología de la especie.

Palabras clave: Bathomorphi; Alimentación; Locomoción; Regresión filogenética; Dimorfismo sexual
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order Myliobatiformes, we included Hypanus americanus 
(Hildebrand & Schroeder, 1928), Gymnura micrura 
Yokota & De Carvalho, 2017, and Urobatis jamaicensis 
(Cuvier, 1816). From the order Rajiformes, we included 
Dipturus olseni (Bigelow & Schroeder, 1951), Fenestraja 
sinusmexicanus (Bigelow & Schroeder, 1950), Rostroraja 
ackleyi Garman, 1881, and Rostroraja texana Chandler, 
1921. From the order Rhinopristiformes, we included 
Pseudobatos lentiginosus (Garman, 1880), and from the 
order Torpediniformes, we included Narcine bancroftii 
(Griffith & Smith, 1834). 

Although the diet of the species may change according 
to the availability of resources and geographical distribution 
for the purpose of this study, the general diet is necessary 
to understand changes in the morphology of the species 
—e.g., if the species feeds on soft or hardshell items, or if 
the items are mobile or static (Ross, 1986). To determine 
the diet of the species, a list of items consumed by each 
species was constructed with information collected from 
Fishbase (Froese & Pauly, 2019), Robertson and Van 
Tassell (2019), and specialized literature (Jargowsky et 
al., 2019; Michael 1993; O’ Shea et al., 2017; Queiroz et 
al., 2019; Stehmann et al., 1978; Yokota & De Carvalho, 
2017). The trophic index value (TI) was also obtained from 
Fishbase. The TI is calculated using a list of items known 
to occur in the diet of each species, based on information 
of stomach content published in books and scientific 
articles, and results in a numerical value ranging from 2.0 
to 4.7, where a primary consumer, which consumes mainly 
plant/detritus (herbivores), may have a TI between 2.0 and 
2.19, while consumers which consume mainly animals 
(carnivores) may have values equal to or greater than 2.8 
(Costa & Cataudella, 2007).

To analyze the morphological variation of the disc, 
photographs of 226 museum specimens in dorsal and 
ventral views were taken and the disc width was measured. 
We tried to ensure that there was a representation of females 
and males for each species. Geometric morphometric 
methods were used to quantify the variation in the shape 
and size of the specimens (Rohlf, 1999; Zelditch et al., 
2004). To analyze the geometric morphometric variation, 
28 marks were used in the dorsal, and 28 in the ventral 
view (Fig. 1a, b). The configurations were optimally 
superimposed using a Generalized Procrustes Analysis to 
obtain a shape coordinates matrix (Rohlf, 1999; Rohlf & 
Slice, 1990). Centroid size (CS), which is an estimator 
of size was calculated (Bookstein, 1991; Monteiro et al., 
2005). Relative Warps (RWs), including both uniform 
and non-uniform components were calculated from the 
Procrustes data and used as shape variables (Bookstein, 
1991; Rohlf, 1993). The main axes of shape variation were 
explored by a principal component analysis (PCA) and 

to get a better appreciation of the shape variation of the 
main PCA axes, a thin-plate spline algorithm was used to 
produce transformation grids that represented the extreme 
positive and negative deviations along the axis (Bookstein, 
1991). Geometric morphometric analyses were performed 
in the Tps software series (Rohlf, 2015).

To test if there are sexual or allometric constraints in 
the observed morphological variation of the disc, size, 
using the centroid size (CS), and sexes, segregating the 
shape variation in groups of females and males per species 
were analyzed. The relationship of the shape variables 
(landmarks matrix) and the centroid size (CS) was tested 
using regression analyses in TpsRegr, version 1.41 
(Rohlf, 2015). Then, we searched for differences in the 
morphological variation by sexes. ANOVA was performed 
on the shape variables using sexes. All statistical analyses 
were done in PAST 3.11 (Hammer et al., 2001).

To analyze the variation of the MC (Fig. 1c, d), 
the mandibles were removed, cleaned, and measured. 
Following specialized literature, 7 measurements were 
taken in the MC: 1) total length of the MC, 2) total length 
of the tooth pad (TP), 3) height of the anterior axis of the 
MC, 4) height of the anterior axis of the TP, 5) height of 
the TP in the central area, 6) height of the central area of 
the MC, and 7) height of the MC at the posterior axis of 
the TP (Dean & Motta, 2004; Navarro-González et al., 
2018; Sáez & Lamilla, 1997, 2004, 2012). To avoid the 
effect of the size of the specimens, all measurements were 
presented as proportions of the total length by dividing 
by the total length of the MC. The resulting values were 
transformed by logarithm and segregated by sexes. PCA 
was performed to determine the main axis of variation and 
the possible grouping of the species. 

The tooth pad of the palatoquadrate and MC (Fig. 
1e) were photographed, and the teeth were classified 
according to the shape of the crown (enameled part of the 
tooth). The main characteristics considered from the crown 
were if the surface was smooth or bumpy, the presence of 
a cusp or ridges, and when the cusp was present, if it was 
rounded or angular (Supplementary material 1; Radinsky, 
1961; Underwood et al., 2015). The teeth of each species 
were described by sexes. Using the teeth classification by 
species and sex, a PCA was performed to determine the 
main axis of variation and possible grouping. 

The molecular sequences of the COI mitochondrial gene 
were downloaded from BoldSystems (www.boldsystems.
org) and GenBank (www.ncbi.nlm.nih.gov/genbank/) 
for 7 species (Supplementary material 2). Phylogenetic 
reconstruction was inferred with the maximum likelihood 
method and the Tamura-Nei model, using 1,000 bootstrap 
replicas in MegaX (Felsenstein, 1985; Kumar et al., 2018; 
Tamura & Nei, 1993). 

http://www.boldsystems.org
http://www.boldsystems.org
http://www.ncbi.nlm.nih.gov/genbank/
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The phylogenetic independent contrasts (PIC) model 
was used to evaluate the correlation between morphological 
(disc-shape, MC, and tooth shape), trophic, and size variation 
throughout the phylogeny. The PIC model estimates the 
regression parameters for a phylogenetic generalized least-
squares analysis (Felsenstein, 1973, 1985; Freckleton, 
2012). Finally, the variables with significant relationships 
were optimized onto the phylogeny to examine trait 
evolution. Estimates of the state of the ancestral nodes 
were made using maximum likelihood on a Brownian 
motion model. PIC model, optimization, and estimation of 
the ancestral nodes were carried out in the R environment 
version 3.6.2 (R Development Core Team, 2011) using the 
packages ape (Paradis et al., 2004), geiger (Harmon et al., 
2008), Phytools (Revell, 2012), fastAnc (Revell, 2012), 
contMap (Revell, 2013), and nlme (Pinheiro et al., 2014). 

Results

The Rajiformes D. olseni, F. sinusmexicanus, R. 
ackleyi, and R. texana, as well as the Myliobatiformes 
species G. micrura, presented the highest values of the 

trophic index, ranging from 3.7 to 3.9. The main items in 
their diet were shrimp and crab, but also included bony 
fish and worms. The Myliobatiformes, H. americanus, and 
U. jamaicensis, showed mean trophic index values of 3.5 
and 3.6; they feed on shrimp, clams, bony fish, crabs, and 
worms. Pseudobatos lentiginosus also had a mean trophic 
index value of 3.6, and feeds on shrimp, crabs, and clams. 
Finally, N. bancroftii had the lowest trophic index value, 
3.1, which was calculated based on closely related species; 
however, it feeds on the same items as the Rajiformes, thus 
we considered its trophic index value should be revised 
(Table 1).

The results of the PCA of the dorsal view (Fig. 2) 
indicated that 2 PCs were sufficient to explain 82% of the 
morphological variation within all species. The first PC 
summarized 64% of the variation and separated rhomboidal 
disc-shapes, with high-aspect ratio pectoral fins, short 
space between both pectoral fin insertions, and small eyes 
(i.e., G. micrura PC1-) from arrow-shaped discs, with 
low-aspect ratio pectoral fins, wide space between both 
pectoral fin insertions, and large eyes (i.e., P. lentiginosus 
PC1+). The second PC summarized 18% of the variation 

Figure 1. Morphological analyses of batoids of the Gulf of Mexico. a, Marks in the dorsal view. b, Marks in ventral view. Red dots: 
landmarks, blue dots: semilandmarks. E: Eye, Sp: spiracle, PrF: pectoral fin, PvF: pelvic fin, Cp: clasper, T: tail. N: Nostril, NC: nasal 
curtain, M: mouth, G: gills slits, Cc: cloaca. c, Mandible showing the tooth pad with red cross lines. TP: Tooth pad, PQ: palatoquadrate, 
C: condilo, MC: Meckel’s cartilage, S: sinfisis, MS: mandibular sinfisis. d, Lengths of the MC showing the tooth pad with red cross 
lines. 1: Total length of the MC; 2: total length of the tooth pad (TP) in the MC; 3: height of the anterior axis of the MC; 4: height 
of the TP on the anterior axis of the MC; 5: height of the TP in the central area of the MC; 6: height of the central area of the MC; 
7: height of the MC at the posterior axis of the TP. e, Types of crowns found in the teeth of the species studied.
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and separated rounded disc-shapes with low-aspect ratio 
pectoral fins with a short distance between the eye and 
the snout (i.e., H. americanus, PC2-), from rhomboidal 
disc-shapes, with medium-aspect ratio pectoral fins with 
a larger distance between the eye and the snout (i.e., R. 
texana PC2+). 

The PCA of the ventral view (Fig. 2) indicated that 2 
PCs were sufficient to explain 79% of the morphological 
variation within all species. The first PC summarized 
66% of the variation and separated wide rhomboidal disc-
shapes, with high-aspect ratio pectoral fins, short mouth, 
nearby gills, and all in a higher position relative to the 
pectoral girdle (i.e., G. micrura PC1-), from narrow, 
rounded disc-shapes, wider mouths, separate gills, and the 
most posterior below the height of the pectoral girdle (i.e., 
N. bancroftii PC1+). The second PC summarized 13% 
of the variation and separated the rounded disc-shapes, 
with narrowed mouths and close to the snout, separated 
gills, and the most posterior in a position below the height 
of the pectoral girdle (i.e., H. americanus, PC2-), from 
arrow-shaped discs, wide mouths, far from the snout, 
nearby gills, and all higher than the pectoral girdle (i.e., 
F. sinusmexicanus PC2+). 

The regression results indicated that the morphology 
of F. sinusmexicanus, G. micrura, N. bancroftii, P. 
lentiginosus, R. texana, and U. jamaicensis changed with 
development (Table 2). The main variation between small 
and large specimens was the width and length of the disc 
and the length of the snout. Small specimens had shorter 

(length, snout to tail) and wider discs, and an elongated 
snout, while larger specimens had elongated (length, snout 
to tail) discs, and shorter snouts (Fig. 3). ANOVA only 
showed sexual dimorphism in G. micrura and R. texana 
(Table 3). Males of G. micrura and R. texana had more 
elongated snouts and discs (snout to tail) than females 
(Fig. 3). 

No sexual dimorphism was found in the MC (F = 
0.398; p = 0.864). Two components were sufficient to 
add 96% of the variation. The first PC1 added 91% of 
the variation and segregated G. micrura (PC1+) from the 
rest of the species because it did not have exposed teeth 
on the front of the MC. On the other edge of the axis, 
on the very edge was U. jamaicensis (PC1-) with a wide 
tooth pad. PC2 added 5% of the variation and segregated 
N. bancroftii (PC2+) in the extreme due to a very reduced 
tooth pad, from D. olseni, P. lentiginosus, R. ackleyi, and 
F. sinusmexicanus, which presented an elongated tooth 
pad (Fig. 4; Table 4). 

The teeth were classified by species and sexes (Table 
5). Males tend to have more angular pointed teeth than 
females and the palatoquadrate had sharper teeth than the 
MC. Fourteen types of teeth were registered (Fig. 5): a and 
b are globe-shaped teeth, the crown is soft and rounded, b 
has a small cusp with soft edges, both shapes, a and b, were 
specific to P. lentiginosus; c to g were the most common 
teeth, they had smooth crowns and range from flat (a and 
d), to rounded (e and f) and angular pointed (g) cusps; h 
and i presented and 2 ridges, respectively, h is specific of 

Table 1
Museum specimens used in the present study obtained from the Ichthyological Collection of the Center for Research and Advanced 
Studies of the National Polytechnic Institute (CINV-NEC). WD: Disc width range and mean; n: number of organisms studied; TI: 
trophic index. Items found in their diet of the species, BF: bonny fish; JF: juvenile-small fish; SH: shrimp; CR: crabs; CL: clams; 
WO: worms.

Common name Order Species WD WD WD n TI BF JF SH CR CL WO

min max mean

cm cm cm

Sting rays Myliobatiformes Hypanus americanus 18.2 32.4 24.3 9 3.5 1 1 1 1 1
Gymnura micrura 19.7 67.0 29.3 45 3.9 1 1 1 1
Urobatis jamaicensis 6.5 21.5 13.4 26 3.6 1 1 1 1

Hardnose skates Rajiformes Dipturus olseni 8.9 46.6 31.5 16 3.8 1 1 1
Fenestraja sinusmexicanus 3.9 21.8 15.0 22 3.9 1 1 1
Rostroraja ackleyi 16.3 21.4 19.6 8 3.7 1 1 1 1
Rostroraja texana 6.0 37.4 20.2 36 3.8 1 1 1

Guitarfish Rhinopristiformes Pseudobatos lentiginosus 9.7 21.3 14.8 24 3.6 1 1 1
Electric ray Torpediniformes Narcine bancroftii 3.1 23.6 13.8 40 3.1 1 1 1 1
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P. lentiginosus; j, k, and l presented bumpy crowns and 
ranged from flat to medium-size, rounded cusp, k and l 
were specific to U. jamaicensis. Finally, in m and n, the 
crown is an angular cusp; these teeth are specific to G. 
micrura. The PC1 (Fig. 5) segregated teeth with smooth 
crowns (i.e., D. olseni; PC1+) from teeth with bumpy 
crowns (i.e., P. lentiginosus, H. americanus; PC1-), while 

PC2 segregated crowns with a cusp (i.e., N. bancroftii; 
PC2+), from flat crowns (i.e., R. ackleyi; PC2-). 

Two of the 4 Rajiformes species were not included in 
the phylogeny, F. sinusmexicanus, R. ackleyi, because no 
molecular sequences of the COI mitochondrial gene were 
found. The phylogeny produced 3 clades: one for Rajiformes, 
R. texana, and D. olseni; a second for Myliobatiformes, G. 

Figure 2. Principal component analyses (PCA) of the dorsal and ventral view of the disc. Species codes. Dol: Dipturus olseni, 
Gmi: Gymnura micrura, Ham: Hypanus americanus, Fsi: Fenestraja sinusmexicana, Nba: Narcine bancroftii, Ple: Pseudobatos 
lentiginosus, Rac: Rostroraja ackleyi, Rte: Rostroraja texana, Uja: Urobatis jamaicensis.

Table 2
Generalized Goodall F-test of the morphological variation and size (centroid size) of 9 species of Batoids. 

Views Dorsal Ventral

df F p F p

D. olseni 52, 676 0.67 0.97 0.57 0.99
F. sinusmexicanus 52, 1,040 4.94 0.00 3.75 0.00
G. micrura 52, 2,340 1.37 0.04 1.06 0.37
H. americanus 52, 312 1.30 0.09 0.76 0.89
N. bancroftii 52, 1,924 6.44 0.00 1.11 0.28
P. lentiginosus 52, 1,144 1.11 0.28 2.18 0.00
R. ackleyi 52, 364 0.55 0.99 0.77 0.88
R. texana 52, 1,768 3.25 0.00 4.86 0.00
U. jamaicensis 52, 1,196 1.56 0.01 1.27 0.11
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micrura, H. americanus, and U. jamaicensis; and a third 
clade groups the Rhinopristiformes P. lentiginosus, and 
Torpediniformes N. bancroftii. The bootstrap consensus 
showed the strongest support, 99% for the 2 Rajiformes, 
followed by H. americanus, and U. jamaicensis with 70%, 
and P. lentiginosus and N. bancroftii with 62%. 

PIC showed a significant relationship between the PC1 
of MC and the ventral (r = 0.67; p = 0.02) and dorsal 
(r = 0.64; p = 0.03) views of the disk-shape (Fig. 6). 
PC2 separated the MC and the ventral (r = 0.86; p = 
0.002) and dorsal (r = 0.72; p = 0.01) views of the disk-
shape. PC1 captured the tooth variation and PC2 the dorsal 

Figure 3. Allometric variation by size and sex observed in the dorsal and ventral views. Species codes. Fsi: Fenestraja sinusmexicana, 
Rte: Rostroraja texana, Gmi: Gymnura micrura, Ple: Pseudobatos lentiginosus, Nba: Narcine bancroftii, Uja: Urobatis jamaicensis. 
CS: Centroid size, smaller shapes (-); larger sizes (+). Sex: Sexual dimorfism, females (F), males (M). 
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Figure 5. Principal component analyses (PCA) of the teeth morphology. Species codes. Dol: Dipturus olseni, Gmi: Gymnura micrura, 
Ham: Hypanus americanus, Fsi: Fenestraja sinusmexicana, Nba: Narcine bancroftii, Ple: Pseudobatos lentiginosus, Rac: Rostroraja 
ackleyi, Rte: Rostroraja texana, Uja: Urobatis jamaicensis. Blue dots: males; red dots: females.

Figure 4. Principal component analyses (PCA) of the measurements of the Meckel’s cartilage (MC). All measurements were 
transformed, dividing them by the MC total length. 2: Total length of the tooth pad (TP) in the MC; 3: height of the anterior axis of 
the MC; 4: height of the TP on the anterior axis of the MC; 5: height of the TP in the central area of the MC; 6: height of the central 
area of the MC; 7: height of the MC at the posterior axis of the TP. Species codes. Dol: Dipturus olseni, Gmi: Gymnura micrura, Ham: 
Hypanus americanus, Fsi: Fenestraja sinusmexicana, Nba: Narcine bancroftii, Ple: Pseudobatos lentiginosus, Rac: Rostroraja ackleyi, 
Rte: Rostroraja texana, Uja: Urobatis jamaicensis. Blue dots: males; red dots: females. Meckel’s cartilage illustrations representing 
the variation on each axis, PC1+G. lessae, PC1-U. jamaicensis, PC2+N. bancroftii, PC2-P. lentiginosus. Toothed area lined.
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view (r = 0.57; p = 0.04) of the disk-shape. Finally, the 
only morphological variable related to the trophic index 
was PC2 of the Meckel’s cartilage (r = 0.81; p = 0.005; 
Supplementary material 3).

Discussion

Factors such as the ecosystems in which the species 
inhabit, their sexual behavior, and their phylogenetic 

Figure 6. Morphological and trophic characters with significant relationship analyzed with the phylogenetic independent contrasts 
method. PC: Principal component. T: Teeth variation, TI: trophic index, DSD: disc-shape dorsal view, DSV: dish-shape ventral view, 
MC: Meckel’s cartilage. Rte: Rostroraja texana, Dol: Dipturus olseni, Nba: Narcine bancroftii, Ple: Pseudobatos lentiginosus, Gmi: 
Gymnura micrura, Uja: Urobatis jamaicensis, Ham: Hypanus americanus. Transformation grids and illustrations of the structures 
represent the extremes and central variation of the character through the axis measured. Red arrows indicate the variables that are 
related. For regression values see Supplementary material 3.
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relationships act synergistically, producing the current 
morphological diversity of species. The present study was 
able to reveal a wide range of morphological variations by 
analyzing different morphological structures. Furthermore, 
it was possible to determine the morphological characters 
that phylogenetically covary with the diet of the species by 
analyzing the morphological and trophic variation through 
the evolutionary history of species. 

With the analyses of the morphological variation 
of the disc, 3 main morphologies were obtained. Both 
views of the disc, dorsal and ventral, showed the same 
grouping pattern, indicating that the shape of the disc is 
the variable that summarizes most of the variation of the 
group. The first morphology of the disc was represented 

by P. lentiginosus, which has a very angular disc, with 
low-aspect ratio pectoral fins, and a wide space between 
the insertions of the pectoral fins. This specific disc 
morphology of P. lentiginosus is also combined with an 
elongated body and strong tail, characters not considered 
in the present study. This species swims by moving its 
thick tail and caudal fin in side-to-side motions and only 
uses its pectoral fins for acceleration and maneuvering 
similar to the way sharks swim (Rosenberger, 2001; Wilga 
& Lauder, 2000). This style was also found in most basal 
members of the batomorph clade, such as the sawfishes, 
which primarily used their thick tails to swim through the 
water (Rosenberger, 2001; Wilga & Lauder, 2000).

The second disc morphology, wide rhomboidal 
discs, groups D. olseni, F. sinusmexicanus, R. ackleyi, R. 
texana, and G. micrura. This last species presented the 
widest disc and because of that, it was separated from 
the main group (Fig. 2). All these species are demersal 
inhabitants (Robertson & Van Tasell, 2019). Species with 
this morphology mainly use intermediate fin movements 
between undulatory and oscillatory locomotion; when in 
the benthos they use an undulatory behavior and switch 
to a more oscillatory motion when swimming in the water 
column (Franklin et al., 2014; Rosenberger, 2001). 

The third disc morphology, circular disc-shapes with 
low aspect-ratio, groups U. jamaicensis, H. americanus, 
and N. bancroftii. This disc shape has been related to 
undulatory-style locomotion, which is related to benthic 
habitats and mainly sedentary species that swim slowly 
along the bottom (Franklin et al., 2014; Rosenberger, 
2001). However, N. bancroftii has a thick tail that, like P. 

Table 3
ANOVA comparing disc shape among sexes of 9 species of 
Batoids. F: Female, M: male, n: number of organisms.

Species Fn Mn p dorsal p ventral

D. olseni 8 7 0.277 0.858
F. sinusmexicanus 10 12 0.324 0.260
G. micrura 22 24 0.027 0.172
H. americanus 6 2 fail fail

N. bancroftii 41 29 0.320 0.231
P. lentiginosus 11 12 0.378 0.165
R. texana 19 17 0.031 0.066
U. jamaicensis 17 8 0.951 0.578

Table 4
Mean values per species of the Meckel’s cartilage (MC) measurements. All measurements were 
transformed, dividing them by the MC total length. 2: Total length of the tooth pad (TP); 3: height 
of the anterior axis of the MC; 4: height of the anterior axis of the TP; 5: height of the TP in the 
central area; 6: height of the central area of the MC; 7: height of the MC at the posterior axis of 
the TP. 

Species 2 3 4 5 6 7

D. olseni 1.53 4.85 8.38 16.66 4.92 5.33
F. sinusmexicanus 1.64 7.13 20.07 30.71 6.30 6.03
G. micrura 2.52 8.13 541.50 541.50 6.25 7.32
H. americanus 2.95 4.92 15.12 19.08 4.92 4.28
N. bancroftii 5.15 6.05 9.85 15.41 4.83 3.99
P. lentiginosus 1.49 4.93 12.88 20.52 4.27 4.30
R. ackleyi 1.56 5.19 11.11 27.56 4.08 3.84
R. texana 1.95 4.54 14.14 22.19 4.56 4.22
U. jamaicensis 2.17 3.06 8.24 9.54 2.96 3.27
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Table 5
Teeth morphology. F: female; M: male. MC: Meckel’s cartilage; PQ: palatoquadrate. 1: presence. Crown shapes described in figure 
1. Main characteristics of the crowns, s: smooth; b: bumpy; c: with cusp; r with ridges

Crown shape s c s c c c c r r b bc bc c c

Order /species Sex Structure a b c d e f g h i j k l m n

H. americanus F MC 1
PQ 1

M MC 1
PQ 1

G. micrura F MC 1
PQ 1

M MC 1
PQ 1

U. jamaicensis F MC 1 1
PQ 1 1

M MC 1
PQ 1 1

D.olseni F MC 1 1
PQ 1 1 1

M MC 1 1 1 1
PQ 1 1 1 1 1

F. sinusmexicanus F MC 1
PQ 1 1

M MC 1 1 1
PQ 1 1

R. ackleyi F MC 1 1
PQ 1

M MC 1 1
PQ 1

R. texana F MC 1 1
PQ 1

M MC 1 1
PQ 1 1

P. lentiginosus F MC 1 1
PQ 1

M MC 1 1
PQ 1

N. bancroftii F MC 1 1
PQ 1 1

M MC 1 1
PQ 1 1
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lentiginosus, it uses for locomotion along with its caudal 
and pectoral fins. Narcine bancroftii is a demersal species, 
found in shallow coastal waters buried beneath the sand, 
mud, or swimming among the seagrass beds (Di Santo & 
Kenaley, 2016; Last et al., 2016). 

	 The morphological variation of the MC was 
similar to that of the disc and was the only variable 
evolutionarily related to the diet of the species. The species 
D. olseni, F. sinusmexicanus, R. ackleyi, R. texana, and 
P. lentiginosus presented even, elongated, and strong MC 
with an elongated tooth pad. These species showed high 
values of the trophic index, and among their diet, crabs 
were a shared prey, thus a strong and elongated MC and 
tooth pad can help to exert powerful compressive forces 
for durophagy (Dean & Motta, 2004). On the other hand, 
in U. jamaicensis and H. americanus, the MC and tooth 
pad were smaller and less thick; these 2 species have a 
broader diet, sharing prey such as fish, shrimp, clams, 
and worms. The analysis showed 2 MC independent 
morphologies, N. bancroftii, which has a thick MC in 
an angular position and the shortest tooth pad. This 
morphology has been related to protrusion, allowing the 
species to have functional flexibility to capture buried prey 
(Dean et al., 2008). The other extreme is represented by G. 
micrura, which presented a very elongated and thin MC 
without frontal teeth, and a wider mouth useful for feeding 
on large prey like fish, shrimp, crabs, and clams (Dean et 
al., 2008).

The teeth of all the Rajiformes studied here, as well as 
G. micrura and N. brancroftii, had smooth crowns, while 
the majority of Myliobatiformes and the F. sinusmexicanus 
species had teeth with bumpy crowns. According to our 
results, tooth variation was evolutionarily related to the 
disc shape and was sexually constrained in most species, 
except for 2 non-dimorphic species, R. ackleyi and P. 
lentiginosus. In all other species, the males had sharper 
teeth than the females; also, the palatoquadrate had 
sharper teeth than the MC, which could indicate that the 
main grip depends on the palatoquadrate when the males 
hold onto the females during mating (Kajiura & Tricas, 
1996). Allometry was observed for most species. Smaller 
specimens had wider discs and a longer snout, while larger 
specimens had longer discs and a smaller snout. This may 
indicate that as the specimen develops, snout growth 
decelerates, while the disc width and length expand, and 
consequently that the growth rate of the snout is different 
from that of the rest of the body (fins).

Two of the species studied here had unique teeth; 
G. micrura had teeth with angular cusps, while P. 
lentiginosus had crowns with ridges and smooth. A 
species that also featured a wide rhomboidal disc and 

a slender and elongated MC is G. micrura, a demersal 
species with feeding preferences for mobile prey such 
as fish and shrimp. For this type of prey, wide and light 
mandibular structures allow fast movements, further, 
pointy teeth allow it to hold and tear prey (Aguilar-
Medrano, 2017; Burres et al., 2015; Dean et al., 2007), 
while a wide disc favors fast movements. On the other 
hand, P. lentiginosus, which presented a highly angular 
disc with low aspect-ratio and thick and elongated MC, is 
a benthic species with feeding preferences for prey such 
as mollusks and crustaceans, which may include hard-shell 
prey. For this type of prey, wide and heavy mandibular 
structures combined with smooth and ridged teeth allow 
exerting powerful compressive forces for durophagy 
(Aschliman, 2014; Rutledge et al., 2019; Summers, 2000). 
Considering the above discussed, the combined analyses 
of morphological structures in batomorphs can reveal a 
wide range of ecological information, especially useful for 
those poorly known species. 

There were species with different teeth between females 
and males such as F. sinusmexicanus, H. americanus, G. 
micrura, and U. jamaicensis. From these species, our 
study also found sexual dimorphism in the disc shape of G. 
lessae, and Jargowsky et al. (2019) found sexual variation 
in its diet. The complete difference in the morphology of 
the teeth may be related to resource partitioning, that is, 
differential feeding to alleviate intraspecific competition 
for food (Albo-Puigserver et al., 2015; Platell et al., 1998; 
Rastgoo et al., 2018; Taniuchi & Shimizu, 1993). 

All the Myliobatiformes analyzed here are distributed in 
the Gulf of Mexico and the Caribbean, while the Rajiformes 
are mainly distributed in the Gulf of Mexico (Last et al., 
2016; Robertson & Van Tassell, 2019). According to our 
results, the morphological variation in all the structures 
analyzed here was more cohesive among Rajiformes than 
in Myliobatiformes. Previous studies have indicated that 
diversification rates are higher in the tropics than in the 
temperate biomes (Rolland et al., 2014), a hypothesis 
that fits our results, where those species inhabiting the 
Caribbean and the Gulf of Mexico presented a broader 
morphological diversification than those that only inhabit 
the Gulf of Mexico. 

Our results support the wide and intricate morphological 
variation in batomorphs. However, we recommend caution 
in the interpretation of the results for H. americanus and 
R. ackleyi for which we have a low sample (Table 1). 
An interesting result of this study is the phylogenetic 
relationship of the MC with the diet of the species. 
Meckel’s cartilage plays a central role in food capture 
and processing, as in P. lentiginosus, where the strong 
and thick mandibular structures allow durophagy, in G. 
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micrura, where elongated and thin mandibular structures 
allow a wide mouth opening, and in N. bancroftii, where the 
thick and angular mandibular structures allow protrusion. 

Another interesting result of this analysis is the 
evolutionary relationship of the disc shape, MC, and teeth, 
indicating that the morphological variation of the different 
structures studied is coupled to enhance the swimming 
and feeding process. However, since the morphological 
variation of batomorphs plays an important role in 
determining their habitat and lifestyle, deviations from 
the general pattern have important consequences. This is 
seen in the demersal species N. brancroftii, which presents 
similar disc morphology to that of the 2 benthic species, U. 
jamaicensis and H. americanus, but the presence of a thick 
tail allows N. brancroftii to use a different locomotion 
style and a different habitat. 

Although our results account for sexual dimorphism 
in the teeth of some species, to delve into this topic, it 
would be necessary to develop more specific analyses of 
the diet of the species by sex, since, although the trophic 
index is useful in the absence of other data, it also limits 
the analysis and comparison between species. Finally, our 
study summarizes an important amount of information, 
concluding that the morphological variation of the disc, 
mandibular structures, and teeth are correlated through the 
evolution of the group and respond to functional patterns 
such as swimming and feeding, which finally, determine 
the ecology of the species.
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