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Abstract
The Teuchitlán River in Mexico is a hotspot of fish diversity, with 3 endemic species. Pseudoxiphophorus 

bimaculatus has been introduced into the river, but its trophic impact on the system is unknown. We determined 
the importance of each food item in the diet of P. bimaculatus with a relative importance index, their feeding 
behavior using an omnivorous index, the trophic position with the TrophLab program, and the niche breadth using 
the standardized Levin index. We performed Permanova analyses to compare diet between size classes, sites, and 
seasons. We analyzed 631 P. bimaculatus individuals. The species consumed mainly terrestrial insects, but presented 
an herbivorous trend in some sites. A generalist trophic behavior was presented in the wet season and a specialist 
behavior in the dry season occupying different trophic levels and presenting variable trophic width. This flexible 
feeding strategy enables P. bimaculatus to exploit resources from different trophic levels. The high consumption 
(%RII > 50) of terrestrial insects could indicate that P. bimaculatus may transport allochthonous energy into the 
river. Furthermore, the high invasive potential of the species represents a risk for the freshwater ecosystems of central 
Mexico, a region that has been recognized as a hotspot for freshwater fish conservation.
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Introduction

Poeciliids have been widely introduced in multiple 
aquatic ecosystems through their popularity as ornamental 
species in addition to their use in biological control 
programs against mosquitoes (García-Vásquez et al., 2017; 
Pyke, 2008). For these reasons, they are considered the 
most abundant and widely distributed exotic freshwater 
fish. Additionally, Poeciliids are successful invaders, an 
attribute mainly credited to their high fecundity, tolerance 
of habitat degradation, and diet flexibility (Magurran, 
2009; Pyke, 2008). 

The twospot livebearer Pseudoxiphophorus bimaculatus 
(Heckel, 1848) is a widespread poeciliid fish species 
with a natural distribution ranging from the Misantla 
River (State of Veracruz) in Mexico to the Prianzapolka 
River in Nicaragua, on the Atlantic slope (Miller et al., 
2009). The trophic biology of the species in its native 
range indicates that it is a fish with herbivorous feeding 
behavior (Miller et al., 2009; Vega-Cendejas et al., 1997), 
but with a tendency towards carnivorous-insectivorous 
feeding behavior outside its natural distribution exhibiting 
a predominance of aquatic insect larvae in its gut contents 
(Mercado-Silva et al., 2002; Trujillo-Jiménez & Toledo-
Beto, 2007). The twospot livebearer has been translocated 
into several basins of Central Mexico, such as those of 
the Balsas River and the Lerma-Chapala River, and has 
recently been reported in the Teuchitlán River, a hot spot 
of fish diversity in the headwaters of the Ameca River 
(Domínguez-Domínguez et al., 2008; Mejía-Mojica et al., 
2012; Ramírez-Herrejón et al., 2012; Ramírez-García et 
al., 2017). 

The Teuchitlán River is a highly anthropized lotic 
system that has undergone more than 60 years of human 

intervention (De la Mora-Orozco et al., 2014). The 
anthropogenic disturbances include modifications of the 
riverbanks, replacing them with concrete, uncontrolled 
domestic wastewater discharges, changes in the river 
bottom substrate, water-diversion for irrigation and 
livestock production, and the construction of a dam for the 
la Vega reservoir, disrupting the continuity to the Ameca 
River (Webb & Miller, 1998). In the Teuchitlán River, 
there is an historic fish richness of 15 native and 6 exotic 
species (López-López & Paulo-Maya, 2001). The butterfly 
goodeid Ameca splendens, and 3 microendemic fishes are 
species documented as present in the site and the only 
ones that currently survive in this area: the Ameca shiner 
Notropis amecae and golden skiffia Skiffia francesae, both 
of which are now extinct in the wild, and the tequila 
splitfin Zoogoneticus tequila, which was reintroduced to 
the area and brought back to the wild in 2018 (De la Vega-
Salazar et al., 2006; Domínguez-Domínguez et al., 2018; 
IUCN, 2020; López-López & Paulo Maya, 2001; Webb 
& Miller, 1998). Nowadays, only 5 native and 6 exotic 
species are found in the Teuchiltán River (Herrerías-Diego 
et al., 2019).

A key factor proposed in the local extinction of native 
fish in the Teuchitlán River is the competition for food 
resources, particularly related to a high abundance of the 
introduced Poeciliids (Kingston, 1978; Webb & Miller, 
1998). The introduction of Poeciliids is among the most 
harmful threats to native freshwater fishes in the Teuchitlán 
River and the recently introduced P. bimaculatus may be 
no exception, since it has been reported to be a successful 
competitor against native Goodeidae fishes in other 
geographic regions (Magurran, 2009; Ramírez-Carrillo 
& Macías-García, 2014). However, there are no data 
regarding the trophic biology of P. bimaculatus in the 
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site and, consequently, the impact of the species on the 
Teuchitlán River food web and native species remains 
poorly understood.

The present study therefore characterizes the trophic 
biology of the invasive P. bimaculatus in the Teuchitlán 
River, in order to: 1) determine its trophic guild, diet 
breadth, omnivory, trophic level, and trophic strategy, and 
2) analyze its temporal, spatial, and ontogenetic variation 
in a highly anthropized lotic system. We also discuss 
the possible role of P. bimaculatus in the transport of 
allochthonous energy into the Teuchitlán River system as 
well as its invasive potential.

Materials and methods

The Teuchitlán River is located in west-central Mexico, 
at the headwaters of the Ameca River basin (20°41’-20°40’ 
N, 103°51’-103°50’ W) (Fig. 1a). The lotic system has a 
length of 1.5 km from the origin to its termination in “La 
Vega” dam (López-López et al., 2004). To reflect different 
human impacts along the river, 5 different points were 
chosen as collection sites (Ramírez-García et al., 2017): 
“Rincón Spring” SpA, “Abrevadero Spring” SpB, “Upper 
part of river” RvC, “Middle part of river” RvD, and “End 
of the river” RvE (Fig. 1b, c). 

We collected samples during the day (10:00-16:00 
hrs), twice per month over 1 annual cycle (January 2016 
to January 2017), using a seine net (4.5 m in length, 2.3 
m in height, and mesh size 1.35 mm) and electrofishing 
equipment (backpack DC electrofishing model ABP-
3, ETS Electrofishing Systems LLC). We determined 2 
seasons according to weather variations (Jiménez-Román, 
1994): dry (January to June 2016) and wet (July to 
November 2016). 

The captured fish were sacrificed by overdosing with 
the anesthetic tricaine mesylate (MS-222) according to 
the Official Mexican Norms NOM-051-ZOO-1995 and 
NOM-033-SAG/ZOO-2014, then labeled and fixed in 10% 
formaldehyde and transferred to 70% alcohol, following 
the criteria of Fournie et al. (2000).

We used an exploratory analysis of prey accumulation 
using the Mao Tau index to determine the minimum 
number of individuals required to characterize the feeding 
habits of P. bimaculatus (Colwell et al., 2004; Appendix). 
We selected a minimum sample of 25 individuals and a 
maximum of 36 per size class, site, and season since the 
curve became asymptotic at 25 individual gut contents 
analyzed. We determined 2 size classes using a preliminary 
analysis of Sturges rule to obtain size class, and we used 
a principal component analysis on diet data and obtained 
the principal preys. The ANOVA test was performed on 
the principal preys to test differences among Sturges size 

classes, and we could only detect differences among 2 
size classes, which correspond to size at first maturity for 
the species in the Teuchitlán River (Ramírez-García et al., 
2017): juvenile fish (0-33.41 mm) and adult fish (> 33.42). 

We obtained the weight (g) and standard length (mm) 
and removed the digestive tract of each fish. We measured 
the length of the intestine (mm) and the weight of the 
gut contents (mg). We performed the gut content analysis 
using the stomach content of P. bimaculatus because 
Trujillo-Jiménez and Toledo-Beto (2007) described the 
presence of a well-defined stomach in P. bimaculatus, 
as a saclike expansion of the digestive tube between the 
esophagus and the short intestine, which represented 
the first third portion of the intestine length. The gastric 
repletion was determined by following Borghetti et al. 
(1994). We used fish with a gastric repletion ≥ 50% in 
the trophic analysis. We evaluated the gut contents with a 
modification of the quadrant method (Hynes, 1950). We 
identified the components of the gut contents to the lowest 
taxonomic level possible, using the keys of Merrit and 
Cummins (1996) for insects, and those of Pennak (1978), 
and Thorp and Covich (2001) for zooplankton and other 
invertebrates. The insect parts for which identification 
was impossible due to high digestive degradation were 
catalogued as unidentified insect parts (UIP). We classified 
all unidentifiable gut content as detritus and this was 
excluded from the trophic analysis, along with gut samples 
that only had detritus in the gut content.

We evaluated the contribution of each food item to 
the diet of P. bimaculatus using a modified version of the 
relative importance index (RII) (Yáñez-Arancibia et al., 
1976): RII = FO*PA/100, where FO is the frequency of 
occurrence and PA is the percentage of area occupied by a 
particular prey in the gut content. We calculated PA using a 
quadriculated microscope slide (1.9 mm × 1.9 mm) and the 
area was determined using a microscope camera (Amscope 
MD-35) with the software AmScope 3.7. This method 
has proved useful for fish with small components in their 
diet (e.g., microscopic algae, millimetric zooplankton, and 
small insect larvae) or when the gut content is difficult 
to separate and quantify (e.g., detritus or plant remains) 
(Canto-Maza & Vega-Cendejas, 2008; Ramírez-Herrejón 
et al., 2013; Vega-Cendejas, 1990). The RII was expressed 
as a percentage (Cortés, 1997).

We used the standardized Levins´ index (BI) to 
calculate a measure of niche breadth with the formula BA 
= B-1/n-1, where B = Levins´niche breadth (B = 1/Σpj2) 
and n = number of possible preys. The BI takes values 
between 0 and 1; fish are considered specialists when 
the BI value is lower than 0.60, and generalists when it 
is higher than 0.60 (Krebs, 1989). We used the omnivore 
index (OI) to estimate the variation in the trophic levels of 
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the prey consumed by the species (Christensen & Pauly, 
1992) with the formula OI = Σ (TLj-TL)2*DCij, where n 
is the number of groups in the system, TLj is the trophic 
level of prey j, TL is the average trophic level of the preys, 
and DCij is the fraction of prey (j) in the average diet of 
predator (i). Values equal to zero indicate that the species 
has only preys on 1 trophic level; large OI values indicate 
a variable trophic position of the species’ preys.

We estimated the trophic level (TL) with the TrophLab 
program (Pauly et al., 2000) using the equation TROPHi 

= 1+ΣDC×TROPHj, were DC represents the fraction of 
the prey j in the diet of species i, and TROPHj is the 
trophic position of species j. G is the number of species´i 
preys. We used Horn´s index (Krebs, 1989) to evaluate 
intraspecific diet overlap using the formula Ro = Σ (Pij+Pik) 
log (Pij+Pik) - Σpij logPij - Σpik logPik / 2 log2, where Ro 
represents the Horn´s overlap index among species j and 
species k; Pij, Pik = proportion of the resource i with respect 
to the total of resources shared by both species (i = 1, 2, 
3..., n). The value of Horn´s index can vary from 0 when 

Figure 1. a) Geographic location of the Teuchitlán River; b) location of study sites in the lotic system; c) physical characterization 
and main prey in the study sites.
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feeding resources are not shared, to 1.0 when maximum 
diet overlap occurs. Values higher than 0.6 are considered 
to represent a significant overlap due to limited resource 
availability (Wallace, 1981; Zaret & Rand, 1971).

We used the Costello trophic diagram to graphically 
determine the importance of components in the diet of the 
species and to identify the feeding strategy of the species 
(Costello, 1990). The abundance of the prey in the gut 
content (%PA) was placed on the axis of the ordinates 
and the frequency of appearance (%FO) on the axis of the 
abscissa. Four quadrants were determined, delimited by 
50% of area and frequency of appearance. The prey items 
located in the upper right quadrant were considered as 
preferential (with a frequency of occurrence and percentage 
of area > 50%). Meanwhile, we considered accidental prey 
items those located in the lower left quadrant (with a 
frequency of occurrence and percentage of area < 50%)

To determine differences in the diet per site, 
season, and size, we conducted multivariate one-way 
PERMANOVAs using the prey consumption data (mm2) 
in PRIMER-E version 7 (Plymouth Marine Laboratory, 
UK) with the PERMANOVA+ package (Anderson et al., 
2008). We used PERMANOVA design to detect overall 
differences in the diet among site, season, and size, and 
consequently, we performed an ANOVA analysis on the 
factors which presented statistically significant differences 
for PERMANOVA.

We conducted multi-factor analyses of variance 
using the R Stats Package to assess differences in prey 
consumption per season, site, and size class (R Core Team, 
2013). We performed a posterior analysis to explore the 
distribution of the residuals and ensure no violation of 
normality and independence. A post hoc Tukey-Kramer 
honest significant difference test was used when the 
ANOVA showed significant differences (Zar, 1999).

Results

We analyzed the gut contents of 631 P. bimaculatus 
individuals with a standard length ranging between 11.74 
and 66.31 mm. From these, 298 were sampled in the wet 
season and 333 in the dry season. Fifty-six percent (355) of 
the digestive tracts analyzed had gut repletion of between 
75 and 100%. Detritus only in 18%, with a higher number 
(83) occurring in the wet season, compared to 29 in the 
dry season. Detritus-only gut content occurred at a high 
frequency in SpA (27), RvE (25), and RvD (16). The site 
with the lowest number of detritus-only gut contents was 
the RvC, with 1 in the dry season and 7 in the wet season.

We classified the diet composition into 10 prey 
categories (Table 1). Terrestrial insects showed the highest 
RII value (49.8-98.3) throughout the sites, size classes, and 

seasons. However, fish parts presented a high RII value 
(55.91) for adult fishes in the RvE site (Table 2). Diet 
differed among seasons (PERMANOVA: pseudo-F = 13.3, 
df = 1, p = 0.004) and sites (PERMANOVA: pseudo-F 
= 6.2, df = 4, p = 0.005), although not ontogenically 
(PERMANOVA: pseudo-F = 0.9, df = 1, p = 0.44). We 
found spatial and temporal differences in the consumption 
of plant remains (ANOVA: f = 8.5639, p < 0.001, df = 
9), fish parts (ANOVA: f = 2.5409, p = 0.0388, df = 9), 
and terrestrial insects (ANOVA: f = 4.4135, p = 0.0016, 
df = 9; Fig. 2d-f), temporal differences for plant remains, 
fish parts, and unidentified insect parts (preferential food 
item by Costello: Fig. 3), and differences in the ingestion 
of plant remains and fish parts. In the wet season, the 
highest consumption of plant remains was found at site 
SpB, while the highest consumption of fish parts was at 
site RvE (ANOVA: f = 8.5, p < 0.0001, df = 1; Figs. 2a, 
b). Terrestrial insects were consumed to a greater extent at 
sites SpB, RvC, and RvD in both seasons, but the lowest 
ingestion of this component was found at sites SpA and 
RvE in the wet season (ANOVA: f = 4.4135, p = 0.0016, 
df = 9, Fig. 2c).

Niche breadth per size class, season, and site were 
variable (Bi mean = 0.22±0.18, Bi minimum = 0.007-Bi maximum 
= 0.66; Table 3). This indicates that the twospot livebearer 
has a specialist trophic niche breadth, with the lowest 
value presented in the dry season (Bi mean = 0.14±0.13) and 
a tendency towards a generalist trophic niche breadth in 
the wet season with the highest value (Bi mean = 0.31±0.19). 
The adults of the RvE site in the wet season presented the 
highest niche breadth value (Bi = 0.66) (Table 3).

Trophic level was variable across class size, site, 
and season (trophic level minimum = 2.68±0.33-trophic 
level maximum = 3.78±0.64). The lowest value was found for 
juveniles of site SpA, while the highest value was found 
for adults at site RvE, both in the wet season (Table 3).

The omnivorous index was also variable (OImean = 0.42 
± 0.43, OI minimum = 0.004-OI maximum = 1.31, see table 3) 
and mostly indicated low levels of omnivorous behavior, 
with the lowest value in the dry season (OImean = 0.16 ± 
0.2) compared to the wet season (OImean = 0.68 ± 0.44). The 
highest values of the omnivorous index were for juveniles 
(OI = 1.31) and adults (OI = 1.2) of site SpA and juveniles 
(OI = 1.16) of site RvE in the wet season (Table 3). 

Diet overlap between size classes was high (0.97), 
but the overlap presents spatial and temporal differences. 
The size classes of site RvE did not overlap in terms of 
trophic resources, with SpA, SpB, RvC, and RvD across 
seasons (values from 0 to 0.58). In the wet season, classes 
I and II of the SpA site did not present diet overlap (0.19 
to 0.55). The main trophic resource in the diet overlap was 
unidentified insect parts (UIP).
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The Costello diagrams showed a temporal difference 
in the feeding strategy of the twospot livebearer (Fig. 3). 
In the dry season, the preferred prey are terrestrial insects, 
while the rest of the prey items are accidental (Fig. 3b). 
In the wet season, no such preferential item was found 
(Fig. 3a).

Discussion

According to the information presented here, the 
invasive species P. bimaculatus presents a dynamic trophic 
strategy and flexible feeding behavior in the Teuchitlán 
River. The species is mainly a carnivorous-insectivorous 
fish, mostly consuming terrestrial insects (Table 2); 
however, we found behavior that was generalist in the 
wet season and specialist in the dry season, as well as 
an herbivorous trend in some sites, occupying different 
trophic levels and variable trophic width (Table 3, Figs. 2, 
3). This variable feeding strategy enables P. bimaculatus 
to exploit resources from different trophic levels, such as 
plants and algae in producers and other fishes in secondary 
consumers.

These findings are congruent with the trophic biology 
data of the species throughout its native and non-native 
distribution; although Vega-Cendejas et al. (1997) and 
Miller et al. (2009) state that P. bimaculatus is herbivorous 
in its native range, Trujillo-Jiménez and Toledo-Beto 
(2007) found that the twospot livebearer is a carnivorous-
insectivorous fish that feeds mainly on terrestrial insects 
within its non-native distribution. The morphology of 
structures related to trophic acquisition, such as the teeth, 
mouth, a well-defined stomach, and short digestive tract, 
indicates that the twospot livebearer is a carnivorous fish, 
as has been reported in invaded areas (Trujillo-Jiménez 
& Toledo-Beto, 2007). These data, far from being 
contrasting, provide evidence that the twospot livebearer 
can present flexible feeding habits, as we found for the 
Teuchitlán River according to trophic width, trophic level, 
and omnivory, which are similar to the flexible feeding 
behavior presented by other related species (Ramírez-
Herrejon et al., 2013; Schaefer et al., 1994). 

We did not find differences in diet among size classes 
(PERMANOVA pseudo-F = 0.9, df = 1, p = 0.44). Dietary 
shifts are expected as a function of increased body size 

Figure 2. Spatio-temporal (a-c), spatial (d-f) and temporal (g-i) variation of prey consumption (mm2) by Pseudoxiphophorus 
bimaculatus in the Teuchitlán River. Bold upper-case letters A, B, C in the bars refer to among site-season, among sites and among 
season differences by ANOVA results, respectively (Tukey-Kramer honest significant difference [HSD] post hoc test, p < 0.05)
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and are common in many fish species (Davis et al., 
2012; Feyrer et al., 2003; King, 2005). However, the 
invasive P. bimaculatus in the Teuchitlán River exhibits 
an ontogenetic overlap in diet, which is indicative of 
shared food items (Horn´s index = 0.97) (Copp, 1992; 
McCormick, 1998). This could be explained by the niche 
overlap hypothesis, which states that a high availability of 
prey reduces competition and allows coexistence between 
different species (Pianka, 1974). This theory could explain 
the ontogenetic diet overlap and coexistences at the same 
site on the river, since the ontogenetic stages of a species 
have been proposed as different ecological units (Davis et 
al., 2012; Stoner & Livingstone, 1984). 

Our results from the relative importance index and the 
PERMANOVA of diet variation indicate the presence of 
spatial variation in resource consumption (Table 2). The 
ANOVA result indicates that consumption of terrestrial 
insects is statistically high in sites with the presence of 
riparian vegetation. This vegetation has a major role in the 

transfer of allochthonous energy to the river system, since 
it provides habitat for insects that may eventually fall into 
the water, increasing the availability of this food supply for 
the fishes (Tabacchi et al., 1998; Wipfli & Baxter, 2010). 
This trend of P. bimaculatus was observed in the RvC 
site, where we found the highest ingestion of terrestrial 
insects (Fig. 2c), which is congruent with the presence of 
well-established riparian vegetation (Fig. 1). 

According to the ANOVA results, the twospot 
livebearer presented the highest ingestion of plant remains 
in the SpA. In spring-fed stream systems, the periphyton 
is fundamental to the web trophic dynamic (Battin et al., 
2003), and the deposition of vegetal detritus from the 
adjacent vegetation, as well as detritus of algal origin, 
could represent food resources (Garman, 1992; Pound et 
al., 2011). The sites SpA and SpB are dominated by rocky 
bottom substrate, and both present concrete banks and high 
periphyton productivity (pers. obs), which could explain 
the high rate of algae consumption. In the case of the high 
rate of plant remains, we suggest that these 2 sites are 
characterized by a low abundance of macroinvertebrates 
and zooplankton (Escalante-Jimenez, unpublished data), 
and SpB is used for watering cattle, which increases the 
input of vegetal matter via animal defecation. The low 
abundance of animal prey items and increased input of 
vegetal material could be causes for the high consumption 
of primary producers in these sites (Figs. 1c, 2d). In terms 
of exploiting the available resources, this represents 
flexibility in P. bimaculatus feeding.

The results of the trophic indices (Table 3), trophic 
strategy (Fig. 3), and diet overlap (Horn´s index) suggest 
temporal differences in the diet of P. bimaculatus. The 
Teuchitlán micro-basin is one of the driest sites in the 
Ameca basin, and a severe difference in rainfall occurs 
between the dry and wet season (Jiménez-Román, 1994). 
We found that a change occurs in the feeding strategy 
between the wet and dry seasons. During the dry season, 
terrestrial insects are preferred, while in the wet season 
the consumption tends to be of primary producers and 
unidentified insects. The preference for terrestrial insects 
during the dry season could be the result of the temporal 
availability of this food. In other streams systems, a 
high productivity coming from the nearby riparian-
terrestrial zone are reported during the summer with a 
consequent high availability of terrestrial insects (Nakano 
& Murakami, 2001). However, the consumption of plant 
remains in the wet season could be a result of the temporal 
transport of this material through the drainage system into 
the river via flood events (Wantzen et al., 2008). This is 
also supported by the increased quantity of unidentified 
terrestrial insects in the diet, which could also be the result 
of the transport of dead and partially degraded insects 

Figure 3. Costello graphics representing trophic strategy based on 
plotting the relationship between the abundance of the prey in the 
gut content (% PA) and the frequency of appearance (% FO). PR 
= Plant remains, ALG = algae, ARA = Araneae, FP = fish parts, 
GA = Gastropoda, ZOO = zooplankton, UIP = unidentified insect 
parts, AI = aquatic insects, TI = terrestrial insects.
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Table 2
Index of relative importance (%RII) of each prey item of Pseudoxhiphophorus bimaculatus per size class and site in the Teuchitlán 
River. Values in bold show the highest RII.

      PR ALG ARA FP GA ZOO UIP AI TI

SpA Wet C-1 48.79 0.51 0.52 4.98 0 0.13 35.5 5.87 3.7
C-2 18.51 0 0 17.31 0 0 51.97 0.72 11.49

Dry C-1 17.14 0.004 2.36 0.07 0 0.002 0.07 1.5 78.86
C-2 9.67 0 2.76 4.61 0 0 0 5.53 77.43

SpB Wet C-1 18.34 0 0 3.79 0 0.006 27.21 0 50.66
C-2 35.67 0 0 0.23 0 0.23 0 5.96 57.92

Dry C-1 0.79 0 0.42 0.87 0.37 0.25 0.22 0.91 96.15
C-2 0.16 0 0.14 2.98 0.46 0 0 1.18 95.08

RvC Wet C-1 0 0 0.83 0 0.03 0 13.35 3.77 82.02
C-2 0.01 0 0.56 3.86 0 0 7.99 8.46 79.11

Dry C-1 0.31 0 2.92 0 0.07 0 0 30.43 66.27
C-2 0 0 0.07 0 0 0 0 25.34 74.59

RvD Wet C-1 0.4 0 0 19.95 0.47 0 29.38 0 49.8
C-2 0 0 1.93 0.9 0 0 7.26 0 89.91

Dry C-1 3.62 0 3.71 0 1.89 0.02 5.79 1.98 82.98
C-2 6.87 0 0.15 1.06 5.87 0 16.88 0.009 69.15

RvE Wet C-1 1.18 0 0.35 35.81 0 0 61.75 0 0.9
C-2 12.12 0 0 55.91 0 0 31.98 0 0

Dry C-1 1.7 0 34.48 0.22 0.1 0.32 28.47 9.7 25
C-2 0.02 0 0.79 0.1 0 0 0.07 0.72 98.3

PR = Plant remains, ALG = algae, ARA = Araneae, FP = fish parts, GA = Gastropoda, ZOO = zooplankton, UIP = unidentified insect 
parts, AI = aquatic insects, TI = terrestrial insects.

Table 1
Food items of Pseudoxhiphophorus bimaculatus in the Teuchitlán River.

Label Food item Identified biological groups

DET Detritus
PR Plant remains
ALG Algae Diatoms, genera: Achnanthes¸ Nitzschia, Terpsinoe
ARA Araneae Spiders 
FP Fish parts Scales, flesh, and vertebrae
GA Gastropoda Exotic snails Melanoides tuberculata and Pomacea bridgesii
ZOO Zooplankton Calanoids copepods, cladocerans, ostracods 
UIP Unidentified insect parts
AI Aquatic insects Orders: Coleoptera, Diptera, Ephemeroptera, Lepidoptera, Odonata, Trichoptera. 

Families: Chironomidae, Dytiscidae, Isotomidae. Stratiomyidae, Tipulidae
TI Terrestrial insects Orders: Diptera, Coleoptera, Hymenoptera, Hemiptera, Thysanoptera. Families: 

Vespidae, Staphylinidae. Genus: the exotic crazy ant Anoplolepis sp. 
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by rainwater (Wantzen & Junk, 2000). Rivers are known 
to suffer temporal changes due their variations in flood 
and drought (Hill & Boston, 1991). As a result, their 
associated biotic communities also vary seasonally and 
the availability of food for fishes in river systems show 
high spatial and temporal variation (Angermeier, 1982, 
1985; Angradi. 1997; Bae et al., 2016).

Temporal shifts in diet have been reported for other 
introduced species in different freshwater systems as a 
response to environmental differences in the availability 
of food resources (Maitipe & De Silva, 1985). Our results 
regarding the temporal switch in feeding strategy are 
consistent with other fish species and for other vertebrates 

(Fig. 3), where the temporal shift is reported as a function 
of an increased abundance of food items in the wet season 
(Rayner et al., 2009; Wilson, 1971; Zaret & Rand, 1971). 
Thus, the temporal change of P. bimaculatus diet may 
reflect the seasonal variation of food resources; however, 
the abundance of food resources was not measured in the 
present study. Further studies should focus on the seasonal 
change of food resources in order to explore the effect of 
resource variability on the diet of P. bimaculatus. 

We used a multivariate analysis (PERMANOVA) to 
test overall diet differences among the sites, seasons, and 
ontogenetic factors, but to evaluate specific differences 
in the use of particular resources we used multi-factor 

Table 3
Niche breadth, omnivore index, and trophic level of Pseudoxhiphophorus bimaculatus by size class and sites in the 
Teuchitlán River. Values in bold are the highest values.

  Wet   Dry  

SpA
P. bi 1 P. bi 2 P. bi 1 P. bi 2

Diet breadth 0.24 0.47 0.08 0.16
Omnivory index 1.31 1.20 0.24 0.14
Trophic position 2.68±0.33 3.2±0.46 2.98±0.36 3.15±0.41

SpB
P. bi 1 P. bi 2 P. bi 1 P. bi 2

Diet breadth 0.43 0.29 0.01 0.02
Omnivory index 0.74 0.49 0.02 0.007
Trophic position 3.03±0.39 2.83±0.35 3.19±0.4 3.24±0.42

RvC
P. bi 1 P. bi 2 P. bi 1 P. bi 2

Diet breadth 0.11 0.11 0.22 0.31
Omnivory index 0.24 0.15 0.02 0.01
Trophic position 3.2±0.4 3.25±0.42 3.2±0.4 3.2±0.4

RvD
P. bi 1 P. bi 2 P. bi 1 P. bi 2

Diet breadth 0.42 0.08 0.07 0.16
Omnivory index 0.55 0.13 0.16 0.40
Trophic position 3.45±0.5 3.2±0.4 3.17±0.4 3.15±0.41

RvE
P. bi 1 P. bi 2 P. bi 1 P. bi 2

Diet breadth 0.24 0.66 0.38 0.007
Omnivory index 1.16 0.80 0.58 0.004
Trophic position 3.64±0.57 3.78±0.64 3.18±0.4 3.2±0.4

P. bi 1 = P. bimaculatus juvenile fish (0-33.41 mm), P. bi 2 = P. bimaculatus adult fish (> 33.42).
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analysis (ANOVA). The PERMANOVA analysis enables 
us to demonstrate a spatial and temporal variation in the 
diet of P. bimaculatus in Teuchitlán River, but multi-factor 
ANOVA permits the detection of specific variation in plants 
remains, fish parts, and terrestrial insects among sites/
seasons. The use of both ANOVA and PERMANOVA is 
useful to better elucidate the effects of biological invasions 
(Gioria & Osborne, 2009), and therefore our study shows 
the utility of both PERMANOVA and ANOVA in trophic 
studies with a community approach to understand complex 
biological information.

The results of the relative importance index indicate a 
high consumption (%RII > 50) of terrestrial insects, which 
was the main food item in the diet of P. bimaculatus. This 
could indicate that P. bimaculatus may function as a vehicle 
of allochthonous energy into the Teuchitlán River system. 
Terrestrial insects are abundant items in freshwater stream 
habitats with different levels of human perturbation and, 
as explained above, riparian vegetation seems to be key 
in the transfer of terrestrial insects to water, making them 
available for fish ingestion (Carbajal-Becerra et al., 2020; 
Nakano et al., 1999; Wipfli & Baxter, 2010). In other 
water bodies, human perturbation can affect the terrestrial-
aquatic energy flux, increasing the allochthonous input by 
terrestrial insects (Vital-Rodríguez et al., 2017). However, 
study of the energetic flux is necessary to corroborate this 
terrestrial-aquatic trophic linkage and to evaluate the role 
of P. bimaculatus in the transfer of energy into the aquatic 
system. 

A key factor proposed in the local extinction of 
native fish in the Teuchitlán River is the competition for 
food resources (Kingston, 1978; Webb & Miller, 1998). 
However, the main problem for evaluating the potential 
trophic impact of P. bimaculatus is the lack of specific 
information about the trophic role of the native species 
and how the Teuchitlán trophic web is structured. The 
endemic Ameca splendens is possibly an herbivorous fish 
based on its possession of a long and convoluted intestine 
and lack of stomach (Miller & Fitzimon, 1971). Because of 
that, trophic overlap of P. bimaculatus and A. splendens is 
expected to be low. However, in laboratory conditions, the 
interactions of poeciliids and native species have shown 
a disadvantage of the natives when there is low food 
availability (Escalera-Vázquez et al., 2016). Meanwhile, 
the natives Zoogoneticus tequila and Zoogoneticus 
purhepechus have short intestines, similar to their relative 
Zoogoneticus quitzoensis, which is a carnivorous fish 
with preference for aquatic insect preys (Acuña-Lara et 
al., 2006). Our results showed that P. bimaculatus are 
carnivorous and thus trophic competition between the native 
and the invasive carnivores are possible. More detailed 
study must be done to test this interaction. However, our 

study provides a baseline for further understanding of the 
Teuchitlán River trophic web, with the addition of the 
Teuchitlán River fish species trophic data to our results 
we could determine the trophic impact of P. bimaculatus 
in the site. 

The poeciliid P. bimaculatus is a species with a native 
distribution in rivers of the Atlantic slope of Central 
America but has also been widely introduced by human 
action into several other drainages (Mejía-Mojica et al., 
2012; Miller et al., 2009; Ramírez-García et al., 2017; 
Ramírez-Herrejón et al., 2012). The introduction of the 
twospot livebearer in the Teuchitlán River is relatively 
recent (< 15 years). It was not reported until 1996 (Dzul-
Caamal et al., 2012; López-López & Paulo-Maya, 2001). 
And not recorded during fieldwork conducted in the area 
in 2008 (ODD per. obs). However, this fish species has 
become successfully established all along the river and is 
the dominant species, representing more than 50% of the 
fish assemblage (Herrerías-Diego et al., 2019). Studies of 
reproductive biology have shown that the invasive twospot 
livebearer in Teuchitlán is iteroparous, the dominating sex 
ratio being female (1.9:1, female:male), and presents early 
reproduction and high fecundity. This indicates the high 
effectiveness of the fish in terms of resource exploitation 
(Gómez-Márquez et al., 2016; Ramírez-García et al., 
2017). 

The flexible behavior in the trophic strategies of P 
bimaculatus presented here is indicative of a successful 
invasive species. Variation in the trophic biology 
throughout sites has been described as characteristic 
of an adaptive response of non-native fish species to 
environmental prey availability (Davis et al., 2012; Jepsen 
& Winemiller, 2002). Seasonally trophic flexible behavior 
seems to be a key factor in the abundance-dominance 
of the species in the Teuchitlán River (Herrerías-Diego 
et al., 2019), helping the twospot livebearer to tolerate 
anthropogenic perturbation of the water body, such as 
processes of habitat modification or eutrophication (Ruehl 
& DeWitt, 2005). The twospot livebearer is a euryphagous 
species, which confers an advantage in terms of avoiding 
seasonal food limitation and has been related to increased 
abundance of invasive species (Weliange & Amarasinghe, 
2003). This life trait of some species of the Poeciliid fish 
family enables individuals to tolerate fluctuations in prey 
availability in their environment and has been proposed as 
a key factor in their invasive success (Arthington, 1991; 
De Carvalho et al., 2019; Pollux & Reznick, 2011). In 
summary, the twospot livebearer shows flexibility in its 
trophic biology; it can occupy different trophic levels, 
modify its trophic width, change its trophic guild, modify 
its omnivorous behavior, and utilize allochthonous and 
autochthonous trophic sources. 
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These results, as well as other biological traits such 
as continuous reproduction, a high proportion of female 
individuals (Ramírez-García et al., 2017), parental care 
associated with viviparity (Gross & Shine, 1981), and 
high tolerance to environmental degradation (Mercado-
Silva et al., 2002) are consistent with successful invasive 
species (Sakai et al., 2001), since this success is related 
to their establishment, spread, and abundance (Hayes 
& Barry, 2008; Marchetti et al., 2004; Ricciardi, 2013; 
Ricciardi et al., 2013). Moreover, in the present study we 
found ontogenetic trophic overlap of P. bimaculatus and, 
considering the iteroparous reproductive biology of the 
species in the site (Ramírez-García et al., 2017), a clear 
generational overlap over time, facilitating the potential for 
spread and colonization and giving rise to the apparently 
rapid and successful establishment of P. bimaculatus in the 
Teuchitlán River (Bateman et al., 2015; Herrerías-Diego 
et al., 2019). 

It is clear that P. bimaculatus should be considered 
a species with high invasive potential and a serious risk 
for the freshwater ecosystems of central Mexico, a region 
that has been recognized as a very important hotspot for 
freshwater fish conservation (Carbajal-Becerra et al., 
2020; Domínguez-Domínguez et al., 2006; Miller, 1986), 
with endemicity of up to 70% and a dramatic decrease 
in native fish populations (De la Vega-Salazar, 2006; 
Domínguez-Domínguez et al., 2008; Lyons et al., 1998). 
The introduction of this species into water bodies of the 
area is therefore to be avoided, and more attention must be 

paid to the stocking process of fish species of commercial 
value and the release of exotic fishes for mosquito control 
or ornamental purposes. Educational programs to prevent 
the introduction of this and other species to areas of 
importance for the conservation of freshwater diversity 
must be conducted, with management plans developed and 
control of established populations carried out. 
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