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Abstract
Ecological niche models allow inferences about the distribution of species and communities, facilitating the 

identification of priority areas for conservation, mainly in threatened environments such as the seasonally dry tropical 
forest (SDTF). The objectives of this work were to delimit SDTF using mostly restricted and endemic vascular plant 
species, in addition to evaluating and comparing the performance of the model with 4 additional proposals of the 
distribution of SDTF in Michoacán. To delimit the distribution of SDTF in Michoacán, 76 individual ecological niche 
models were constructed. Then, the individual models were assembled to obtain the biome distribution model, and 
the resulting map was compared with the other SDTF proposals for Michoacán. The model best supported by the 
observed data and balanced in the percentage of omission and commission errors was our model, and the model most 
like ours in terms of the predicted area, was the one proposed by INEGI (2003). The use of widely distributed species 
in the definition of communities results in models with greater overestimation. It is important to adapt the available 
information and knowledge about the object of study, to properly integrate them into the different algorithms that 
allow us to obtain an approximation of what happens with the species or communities.
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Resumen
Los modelos de nicho ecológico permiten hacer inferencias sobre la distribución de especies y comunidades, 

permitiendo identificar áreas prioritarias para la conservación, principalmente en ambientes amenazados como el 
bosque tropical estacionalmente seco (SDTF, por sus siglas en inglés). Los objetivos de este trabajo fueron delimitar el 
SDTF utilizando especies de plantas vasculares endémicas y características del bioma, además de evaluar y comparar el 
modelo con 4 propuestas sobre la distribución del SDTF en Michoacán. Para delimitar su distribución, se realizaron 76 
modelos de nicho ecológico. Los modelos individuales fueron ensamblados para obtener el modelo de distribución del 
bioma y el mapa resultante fue comparado con las propuestas del SDTF para Michoacán. El mejor modelo respaldado 
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Introduction

Environmental deterioration demands better 
documentation of the planet's biodiversity. This has 
required the development of tools that facilitate data 
management and decision-making, such as geographic 
information systems (Ferrier, 2002; Guisan & Theurillat, 
2000; Guisan & Thuiller, 2005), which allow inferences 
about the distribution of a species or a group of species 
to be made more quickly and easily (Elith et al., 2006; 
Peterson & Soberón, 2012). Among the multiple uses of 
geographic information systems (GIS), there are studies 
in which they use these tools to model plant communities 
(Franklin, 1995). Predicting the distribution of a plant 
community using GIS has been important in studies of 
conservation of priority areas, of ecological restoration and 
to evaluate the effect of climate change (Bojórquez-Tapia 
et al., 1995; Franklin, 1995; Zimmermann, 2000).

The geographical limits of a plant community are not 
always easy to define (Méndez-Toribio et al., 2014). In 
studies that model communities, several strategies have 
been proposed for identifying the spatial patterns that define 
them (Elith et al., 2006; Ferrier, 2002; Ferrier & Guisan, 
2006; Franklin, 1995). One of the most used methodologies 
in the modeling of the distribution of plant communities is 
using species assembly, which consists of the combination 
of individual potential distribution models to generate a 
map of the distribution of a community. This combination 
provides information on the distribution of species richness 
in certain areas within the study community. In addition, it 
allows the identification of spatial patterns followed by the 
species that make up this community (Ferrier & Guisan, 
2006; Franklin, 1995; Guisan & Zimmermann, 2000).

The different methodologies and algorithms used to 
model the potential distribution of species yield different 
results (Araújo & Guisan, 2006; Elith et al., 2006; Pearson 
et al., 2006). For this reason, alternative statistical tests 
have been implemented to evaluate the performance of the 
models, such as the binomial test, the partial ROC (receiver 
operating characteristics), the AUC (area under the curve), 
etc. (Fielding & Bell, 1997; Hirzel et al., 2006; Liu et al., 
2016; Oreskes et al., 1994; Peterson et al., 2008). These 
statistics use a set of data independent from the data used 

to generate the model to evaluate the performance and 
constancy of a model. Model evaluation allows researchers 
to discern which model is the most appropriate and best 
supported by the observed data (Johnson & Omland, 
2004), guaranteeing the correct interpretation and quality 
of the results (Guisan & Thuiller, 2005; Mateo et al., 2011; 
Muñoz & Felicisimo, 2004). Despite the importance of 
these tests, such validation with independent data (some 
set of data not used as training or test) is rarely used in 
species modeling studies.

The seasonally dry tropical forest (SDTF), also 
known as tropical dry forest, is considered one of the 
most diverse and distinctive biomes worldwide due to the 
large number of endemic species it harbors (Olson et al., 
2000). In Mexico, SDTF contains more than 6,000 species 
of vascular plants, of which more than 40% are endemic 
(Rzedowski, 1978; Villaseñor & Ortiz, 2014). National 
states with the highest number of endemic or characteristic 
(mostly restricted to) SDTF species are Oaxaca (1,396), 
Guerrero (1,251), Jalisco (1,237), and Michoacán (1,053; 
Villaseñor, 2016). In Michoacán, SDTF is located mainly 
in the Balsas Depression, a physiographic and floristic 
province that also contains the largest area of SDTF in 
the country (Rzedowski, 1978). The SDTF in the state 
of Michoacán contains 18% of the total vascular flora 
reported for the state (Villaseñor, 2016).

For several decades, the SDTF has faced serious 
conservation problems due to urban expansion and the 
constant exploitation of plant and animal species. As such, 
its original distribution area has been drastically reduced, 
causing the loss of and constant threat to a high number 
of species, mainly endemic. Due to this problem, it is 
considered among the most threatened tropical biomes in 
the world (DRYFLOR et al., 2016; Challenger & Soberón, 
2008; Trejo & Dirzo, 2000).

This study has the purpose of evaluating different 
proposals of the potential distribution of the SDTF in 
Mexico, specifically in the state of Michoacán. In Mexico, 
STDF includes low deciduous forest, deciduous tropical 
forest, dry forest, and thorny forest (Miranda & Hernández, 
1963; Rzedowski, 1978; Villaseñor & Ortiz, 2014) and 
is distributed mainly in the Pacific slope from southern 
Sonora and southwestern Chihuahua to Chiapas and on the 

por los datos observados y equilibrado en el porcentaje de errores de omisión y comisión fue nuestro modelo y el 
más similar a éste fue el propuesto por el INEGI (2003). El uso de especies de amplia distribución en la definición 
de comunidades resulta en modelos con mayor sobreestimación. Es importante adecuar la información disponible y 
el conocimiento sobre el objeto de estudio, para integrarlos adecuadamente a los diferentes algoritmos que permitan 
obtener un acercamiento sobre lo que ocurre con las especies o comunidades.

Palabras clave: Bosque tropical estacionalmente seco; Especies endémicas; Maxent; Michoacán, México
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gulf slope from Tamaulipas to the Yucatán Peninsula. It is 
found at altitudes ranging from 0 m to 1,900 m (Villaseñor 
& Ortiz, 2014). An important determining characteristic of 
STDF distribution is temperature, particularly the extreme 
minimum temperature (Challenger & Soberón, 2008).

Michoacán, with 1,053 species of native plants 
mostly distributed in the SDTF, ranks fourth in richness 
at the state level. In addition, several floristic studies have 
documented a large part of the flora and its biodiversity in 
general (e.g., Cué-Bär, Villaseñor, Arredondo et al., 2006; 
Cornejo-Tenorio & Ibarra-Manríquez, 2017; Leavenworth, 
1946; Rodríguez & Espinosa, 1995, 1996), information 
that allows inferences to be made about the distribution 
of species among different biomes. Given the number of 
species present in the SDTF and the information available 
(databases with enough information to develop ecological 
niche models), it is important to evaluate the hypothesis 
that flowering plants (Angiosperms) that are endemic to 
Mexico, whose distribution is restricted to the SDTF, are 
good predictors of its geographical distribution.

The delimitation of the SDTF in Mexico has been 
addressed several times using GIS that consider different 
inputs, including the combination of plant and animal 
species (Prieto-Torres & Rojas-Soto, 2016), empirical 
knowledge (Rzedowski, 1990), vegetation censuses 
(INEGI, 2003) or particular plant species (Villaseñor 
& Ortiz, 2014). However, to date there has been no 
evaluation of these proposals to define which model is 
more statistically accurate in delimiting the biome.

The objective of this work is to propose a delimitation 
of the SDTF in the state of Michoacán based on the 
assembly of ecological niche models of species that are 
endemic to or whose distribution is restricted to the biome. 
Once this potential distribution of the SDTF has been 
defined, it is compared with other published proposals 
that delimit the biome, such as Rzedowski (1990), INEGI 
(2003), Villaseñor and Ortiz (2014) and Prieto-Torres and 
Soto-Rojas (2016).

Materials and methods

 The endemic or characteristic (mostly restricted to) 
species of the seasonally dry tropical forest (Villaseñor, 
2016, unpublished data) in Michoacán were selected based 
on the number of records from 2 sources of information: 
the National Biotic Information System (SNIB-REMIB) at 
the Comisión Nacional para el Conocimiento y Uso de la 
Biodiversidad (Conabio, 2018), and the digital repository 
of the National Herbarium of Mexico (MEXU-UNIBIO), 
at the Instituto de Biología, Universidad Nacional 
Autónoma de México (UNAM). The selected records were 
stored in a database which was later refined following the 

recommendations of Castillo et al. (2014) and Chapman 
(2005). Namely, 1) duplicate records were eliminated, 2) 
records that did not have coordinates were georeferenced, 
3) records that could not be georeferenced were deleted, 
and 4) species with < 5 records were excluded (Pearson 
et al., 2007). The final database consisted of 76 species. 
Finally, for each species, an exploration of the data was 
carried out by generating their biogeographic track in 
ArcMap using the tool “minimum spanning tree tools”/
EMST in order to detect sampling points of a species that 
deviate from the geographical pattern followed by most 
of the records. Any disjoint points detected were carefully 
evaluated, both taxonomically and geographically, for 
inclusion or elimination in the analyses (Fig. 1).

We considered 58 environmental variables, with a 
resolution of 30 seconds (~1 km2), obtained from different 
sources. Twenty-six variables are climatic (Hijmans et 
al., 2005; Cruz-Cárdenas, López-Mata, Villaseñor et al., 
2014), 9 topographic, 9 edaphological and 14 include 
remote sensing data (Cruz-Cárdenas, López-Mata, Ortiz-
Solorio et al., 2014). The 58 layers were cut using the 
polygon of the state of Michoacán as a mask; the clipping 
of the variables was carried out in ArcMap 10.0 (ESRI, 
2010). Restriction of the variables to the limits of the 
state of Michoacán was done in order to represent more 
precisely the accessible area (M in the BAM diagram) that 
a certain species can occupy (Soberón & Peterson, 2005; 
Soberón et al., 2017), thus improving model calibration 
(Barve et al., 2011).

Figure 1. Biogeographic tracks of 3 species endemic or 
characteristic of the seasonally dry tropical forest. Notice that 
species with a blue line shows a site (black circle) which departs 
significantly from the pattern followed by the track in the study 
area (Michoacán).
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The use of too many environmental predictors can cause 
overfitting of the models, leading to errors in the prediction 
of species distributions (Peterson & Nakazawa, 2008). To 
reduce the number of variables, a Principal Component 
Analysis (PCA) was carried out (Dormann et al., 2007). 
For this analysis, the values of the 58 variables were 
extracted from each of the presence records; these values 
were used to run a PCA in R program (R Development 
Core Team, 2017). The components that accumulated 
80% of the variance, and within each component, the 
variables with above 95% of the load values were used for 
further analyses. The PCA made it possible to detect the 
components with the greatest contribution to the models 
and eliminate collinearity among the variables (Cruz-
Cárdenas, López-Mata, Villaseñor et al., 2014).

An ecological niche model was constructed individually 
for each of the selected endemic/characteristic SDTF 
species. Niche models were generated using Maxent's 
algorithm ver. 3.3.3e (Phillips et al., 2006), which uses 
only presence data to model the most uniform distribution 
of a given species throughout the study area, restricted 
by the environmental specifications of the presence 
data. The extrapolation of these values to a given area 
results in a probability distribution map ranging from 0 
to 1 (Phillips & Dudík, 2008). Maxent has proven to be 
a reliable algorithm and generates good results even with 
small sample sizes (< 10) (Pearson et al., 2007; Phillips 
et al., 2006).

The inputs used to run the ecological niche models 
were the records of the presence of each species and the 
environmental variables with the greatest contribution 
in the PCA. The program was used with the default 
configuration except for the do clamping and extrapolate 
option, to avoid extrapolation of the extreme values of 
the variables (Elith et al., 2011). It was also configured 
to use 25% of the data to validate the model and 75% to 
run the analysis (Phillips et al., 2006). Individual models 
were evaluated using independent threshold statistics, 
such as the Area under the curve (AUC), although it has 
been strongly criticized for the similar weight attributed 
to omission and commission errors (Lobo et al., 2008; 
Peterson et al., 2008). Therefore, in addition the models 
were also evaluated using the partial ROC (Peterson et al., 
2008) which was calculated with the tool for partial ROC 
V. 1.0 program (Barve, 2008), applying 1,000 iterations 
and considering 5% error. The significance of the AUC 
ratio was estimated with bootstrapping (1,000 replications) 
using 50% of training localities; such AUC ratios were 
calculated with the Z test of the R program (http://www.r-
project.org/).

The Maxent logistic outputs from each of the 76 
species-level ecological niche model were processed in 

ArcMap ver.10.0, to obtain the potential distribution of 
the SDTF. The probabilistic models obtained from Maxent 
were converted to binary layers (0-1) using the maximum 
training sensitivity plus specificity threshold, which has 
been shown to be the most accurate in predicting the 
distribution of species (Jiménez-Valverde & Lobo, 2007; 
Liu et al., 2013; Weber, 2011). The resulting binary models 
were summed using the Algebra map tool implemented 
in ArcMap (D'Amen et al., 2015, 2017; Henderson et 
al., 2014). The layer with the sum of the models was 
reclassified using 76 thresholds, each representing the 
superposition from 1 to 76 of the individual models. 
At each threshold errors of omission were calculated 
considering all the records of the modeled species plus an 
additional number of data documenting the presence of the 
STDF in Michoacán. An error of omission was considered 
when a point of presence of the species was not predicted 
by the threshold (Fielding & Bell, 1997). The threshold 
with the lowest error rate of omission was considered as 
the potential distribution of the STDF in Michoacán.

The comparison and evaluation of the different 
models of the distribution of the SDTF was carried out 
using several statistical tests. These tests also allowed to 
evaluate the over- and under-estimation of the proposals 
of the STDF distribution. The following proposals were 
compared to the model generated in this study: Rzedowski 
(1990), INEGI (2003), Villaseñor and Ortiz (2014), and 
Prieto-Torres and Soto-Rojas (2016). The first test was 
a comparison of the geographic overlap between our 
model and each of the previous models, calculated by 
adding each pair of models using the “Algebra map tool 
package” of ArcMap. In a second test, the similarity of 
the models was evaluated using the Kappa estimator. For 
this analysis, our model was considered the closest to the 
potential distribution of the SDTF (reference model). The 
analysis was performed with the Kappa Analysis Tools 
extension in ArcView 3.x (Jenness & Wynne, 2005, 2007; 
Pontius & Millones, 2011). This estimator measures the 
overall similarity of the model, considering a rank from 
0-1, in which values < 0.40 are considered bad models, < 
0.60 regular models, > 0.80 good and 1 excellent (Landis 
& Koch, 1977).

A third evaluation test consisted of quantifying errors 
of omission, using all the presence records of the selected 
species. The presence data points were superimposed on 
each of the 4 models to identify where the models failed to 
predict them. A fourth evaluation analysis was a binomial 
test using 183 additional records of species of vascular 
plants characteristic of the SDTF that were independent of 
the points used to generate the model. This test gives an 
estimate of the amount of omission errors of each proposal. 
Finally, 2,320 occurrence records of species (Conabio, 2018) 



	 M. Flores-Tolentino et al.  / Revista Mexicana de Biodiversidad 90 (2019): e902829	 5
	 https://doi.org/10.22201/ib.20078706e.2019.90.2829

reported in vegetation types adjacent to the SDTF were 
used to obtain the model with the greatest uncertainty in 
the classification of the biome. These vegetation types were 
tropical sub-deciduous forest (373 records), Quercus forest 
(1,806), humid mountain forest (118) and xerophytic scrub 
(23). This final test allowed the detection of over- and under-
estimation by the models and the rate of commission errors.

Results

We documented 253 species recorded as endemic to or 
characteristic of (mostly restricted to) the SDTF in Mexico 
and occurring in Michoacán; in total they included 2,781 
records. Of these species, 76 species had more than 5 
records in the state, totaling 1,051 records that were used 
for modeling of the distribution of STDF in Michoacán 
(Table 1).

The principal components analysis applied to 
eliminate the collinearity of the variables indicated that 
the first 8 components explain 82% of the environmental 
variation, which included 30 of the 58 variables initially 

proposed (Table 2). Those 30 variables were used to run 
the ecological niche models for each species. A detailed 
explanation of the selected variables is provided by Cruz-
Cárdenas, López-Mata, Villaseñor et al. (2014) and López-
Mata et al. (2012).

An individual ecological niche model was generated 
for each of the 76 focal SDTF species. Most models had 
high AUC values (92%: 0.900-0.999, considered very good 
models). The remaining 8% of the models’ AUC values 
were considered good (0.835-0.0.887). The ecological niche 
models obtained were better than a randomly generated 
model (Baldwin, 2009; Peterson et al., 2011). Performance 
estimation of the models was also favorable using the 
partial ROC. Likewise, 100% of models were statistically 
significant, with AUC ratios ranging from 1.052 to 1.987 
(p < 0.001; Table 1). The assembly of the binary models 
was considered to represent the potential distribution of 
the SDTF in Michoacán; the threshold limit of the SDTF 
was considered with the pixels where 5 or more species 
coincided, which was the cut-off threshold that produced 
the lowest percentage of errors of omission (17%).

Table 1
Species used for the delimitation of the seasonally dry tropical forest in the state of Michoacán, Mexico (N = 76). For each species, 
the number of records used for training and test is indicated; likewise, the performance value of the model estimated through the AUC 
and Partial ROC, and the omission of the binary model (expressed as the number of records omitted) are indicated.

Species Training/
testing

AUC Partial 
ROC

Omission

Acanthaceae
Aphelandra lineariloba Leonard 6/1 0.938 1.333 1
Dicliptera haenkeana Nees 7/2 0.942 1.285 1
Tetramerium langlassei Happ 5/1 0.835 1.193 0
Tetramerium rubrum Happ 6/1 0.913 1.152 1
Apocynaceae
Fernaldia asperoglottis Woodson 11/3 0.912 1.132 1
Marsdenia callosa Juárez-Jaimes & W.D. Stevens 5/1 0.977 1.509 0
Prestonia contorta (M. Martens & Galeotti) Hemsl. 5/1 0.901 1.127 0
Thevetia pinifolia (Standl. & Steyerm.) J.K. Williams 5/1 0.982 1.148 1
Aristolochiaceae
Aristolochia mutabilis Pfeifer 4/1 0.956 1.733 0
Asteraceae
Bidens mexicana Sherff 4/1 0.963 1.385 1
Cosmos pacificus Melchert var. pacificus 6/1 0.950 1.297 1
Cymophora accedens (S.F. Blake) B.L. Turner & A.M. Powell 4/1 0.998 1.637 1
Dendroviguiera puruana (Paray) E.E. Schill. & Panero 8/2 0.959 1.052 1
Guardiola pappifera Paul G. Wilson 3/1 0.993 1.518 1
Melampodium dicoelocarpum B.L. Rob. 9/3 0.917 1.366 1
Melampodium nutans Stuessy 9/2 0.962 1.153 1
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Table 1
Continued

Species Training/
testing

AUC Partial 
ROC

Omission

Pectis decemcarinata McVaugh 12/3 0.980 1.181 0
Pectis linifolia L. var. hirtella S.F. Blake 9/3 0.887 1.335 1
Boraginaceae
Cordia globulifera I.M. Johnst. 9/2 0.905 1.271 0
Burseraceae
Bursera confusa (Rose) Engl. 8/2 0.849 1.156 2
Bursera coyucensis Bullock 27/9 0.986 1.121 2
Bursera crenata Paul G. Wilson 38/12 0.970 1.052 4
Bursera discolor Rzed. 19/6 0.958 1.088 1
Bursera excelsa (Kunth) Engl. var. acutidens (Sprague & L. Riley) McVaugh & Rzed. 3/1 0.998 1.987 0
Bursera fagaroides (Kunth) Engl. var. purpusii Brandegee) McVaugh & Rzed. 9/2 0.901 1.183 0
Bursera infernidialis Guevara & Rzed. 21/7 0.988 1.079 3
Bursera kerberi Engl. 23/7 0.971 1.066 2
Bursera occulta McVaugh & Rzed. 3/1 0.996 1.907 0
Bursera paradoxa Guevara & Rzed. 18/6 0.982 1.138 2
Bursera sarcopoda Paul G. Wilson 10/3 0.905 1.401 1
Bursera sarukhanii Guevara & Rzed. 26/8 0.976 1.052 1
Bursera toledoana Rzed. & Calderón 6/2 0.984 1.332 0
Bursera trifoliolata Bullock 12/3 0.970 1.157 2
Bursera trimera Bullock 24/8 0.973 1.094 2
Cactaceae
Backebergia militaris (Audot) Bravo ex Sánchez-Mej. 10/3 0.955 1.058 2
Pachycereus tepamo Gama & S. Arias 6/1 0.999 1.619 0
Stenocereus chrysocarpus Sánchez-Mej. 7/2 0.956 1.328 1
Celastraceae
Crossopetalum managuatillo (Loes.) Lundell 13/4 0.932 1.060 3
Convolvulaceae
Calycobolus nutans (Moc. & Sessé ex Choisy) D.F. Austin 6/1 0.900 1.525 0
Ipomoea punticulata Benth. 7/2 0.977 1.203 2
Cucurbitaceae
Cucurbita argyrosperma K. Koch var. argyrosperma 6/1 0.947 1.519 0
Rytidostylis longisepala (Cogn.) C. Jeffrey 8/2 0.878 1.087 2
Cyperaceae
Carex arsenei Kük. 5/1 0.991 1.288 0
Euphorbiaceae
Euphorbia linguiformis McVaugh 5/1 0.987 1.294 0
Euphorbia umbellulata Engelm. ex Boiss. 7/2 0.953 1.348 0
Jatropha galvanii J. Jiménez Ram. & J.L. Contr. 4/1 0.982 1.899 0
Jatropha stephanii J. Jiménez Ram. & Mart. Gord. 11/3 0.994 1.161 3
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Table 1
Continued

Species Training/
testing

AUC Partial 
ROC

Omission

Manihot tomatophylla Standl. 14/4 0.928 1.121 2
Fabaceae
Acaciella igualensis Britton & Rose 4/1 0.997 1.614 1
Aeschynomene hintonii Sandwith 4/1 0.990 1.351 1
Aeschynomene paucifoliolata Micheli 5/1 0.925 1.252 0
Desmanthus interior (Britton & Rose) Bullock 8/2 0.973 1.193 1
Lonchocarpus balsensis M. Sousa & J.C. Soto 13/4 0.946 1.104 0
Lonchocarpus obovatus Benth. 4/1 0.951 1.479 0
Lonchocarpus schubertiae M. Sousa 7/2 0.975 1.341 0
Mimosa egregia Sandwith 7/2 0.974 1.596 0
Mimosa rhododactyla B.L. Rob. 5/1 0.981 1.486 1
Mimosa rosei B.L. Rob. 16/5 0.969 1.127 1
Mimosa tricephala Schltdl. & Cham. var. nelsonii (B.L. Rob.) Chehaibar & R. Grether 5/1 0.878 1.204 1
Lythraceae
Cuphea lobophora Koehne var. elongate S.A. Graham 7/2 0.946 1.343 0
Malpighiciaceae
Galphimia multicaulis A. Juss. 9/3 0.928 1.482 0
Galphimia paniculata Bartl. 5/1 0.902 1.440 0
Malvaceae
Gossypium lobatum Gentry 18/5 0.985 1.135 0
Gossypium schwendimanii Fryxell & S.D. Koch 6/2 0.999 1.336 2
Gossypium trilobum (Sessé & Moc. ex DC.) Skovst. 5/1 0.988 1.950 0
Pavonia oxyphylla (DC.) Fryxell var. melanommata (B.L. Rob. & Seaton) Fryxell 6/1 0.876 1.478 0
Sida fastuosa Fryxell & S.D. Koch 6/1 0.952 1.543 0
Waltheria pringlei Rose & Standl. 15/5 0.933 1.077 1
Nyctaginaceae
Salpianthus aequalis Standl. 6/2 0.900 1.264 1
Passifloraceae
Passiflora juliana J.M. MacDougal 3/1 0.990 1.869 1
Passiflora viridiflora Cav. 8/2 0.990 1.067 2
Primulaceae
Bonellia pringlei (Bartlett) B. Ståhl & Källersjö 4/1 0.921 1.295 1
Ranunculaceae
Delphinium subscandens Ewan 8/2 0.926 1.170 1
Rhamnaceae
Karwinskia johnstonii Ric. Fernández 11/3 0.977 1.558 0
Rubiaceae
Simira mexicana (Bullock) Steyerm. 9/2 0.971 1.215 1
Santalaceae
Phoradendron dolichocarpum Kuijt 6/1 0.990 1.595 1



	 M. Flores-Tolentino et al.  / Revista Mexicana de Biodiversidad 90 (2019): e902829	 8
	 https://doi.org/10.22201/ib.20078706e.2019.90.2829

The model of STDF distribution in the state of 
Michoacán generated here estimated a surface area of 
22,483.3 km2, representing 38.7% of the state’s territory 
(Fig. 2). According to the model, SDTF is distributed 
mainly in the regions of the Balsas Depression and part of 
the Mexican Pacific Coast (Lázaro Cárdenas and Aguililla 
municipalities). Figure 2 shows the potential distribution 
of the SDTF in Michoacán and the number of species 
considered for its delimitation.

The superposition (assembly) of the 76 models generated 
a detailed map of species richness along the distribution 
area of the SDTF (Fig. 3). The portions that concentrate 
more than 50% (29-43 species) of the species analyzed are 
found mostly in the southern and southeastern parts of the 
distribution, with an archipelago of small patches running 
to the northeast, near the state of Jalisco. The richest zones 
identified are included in 3 physiographic subprovinces 
(INEGI, 2014): the southern part of the Balsas Depression 

Table 2
Variables used in the modeling of 76 species characteristics of the seasonally tropical dry forest in the state of Michoacán, Mexico.

Type Variable

Climatic bio02 (average daytime variation)
bio03 (isothermality)
bio04 (seasonality of temperature)
bio05 (maximum temperature of the warmest month)
bio06 (minimum temperature of the coldest month)
bio07 (annual variation in temperature)
bio11 (average of the coldest quarter temperature)
bio12 (annual rainfall)
bio13 (precipitation of the wettest month)
bio15 (seasonality of precipitation)
bio18 (precipitation of the warmest quarter)
bio19 (precipitation of the coldest quarter)
evahumed (real evapotranspiration of wet months)
evasecos (real evapotranspiration of dry months)
ppsecos (precipitation of dry months)

Topographic aspect (orientation 0° to 90°)
mexdem (digital model of elevation)
mexslope (slope)
tri (terrain roughness index)
twi (topographic moisture index)

Edaphic 
Cruz-Cárdenas, López-Mata, Ortiz-Solorio et al. (2014)

mexca (calcium)

mexce (electric conductivity)
mexco (organic carbon)
mexk (potassium)
mexmg (magnesium)
mexras (sodium absorption radius)

*MODIS modisdic (normalized vegetation index December)
modisfeb (normalized vegetation index February)
modismar (normalized index of vegetation March)
modisabr (normalized vegetation index April)

* Variables obtained with remote perception data (MODIS web): Moderate Resolution Imaging Spectroradiometer; December, 
February, March, and April 2009.
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(the westernmost richest area), the Infiernillo Dam in 
Tierra Caliente (Southern Cordillera subprovince) near the 
border with the state of Guerrero, and the Tepalcatepec 
Depression at the western edge of the SDTF distribution, 
near the border with the state of Jalisco (Fig. 3). From 
these nuclei of high concentration of species, a gradient is 
formed that decreases towards the limits of the SDTF with 
other biomes, such as the temperate forest.

Figure 3 shows the results of the comparison using the 
spatial coincidence, of the model proposed here (22,483.3 
km2) with those proposed by Rzedowski (1990; 33,238 
km2), INEGI (2003; 22,049 km2), Villaseñor and Ortiz 
(2014; 28,010 km2), and Prieto-Torres and Soto-Rojas 
(2016; 37,717 km2). The model with the largest coinciding 
area was that proposed by Prieto-Torres and Rojas-Soto 
(95%), and the model with the smallest coincidence was 
that of Villaseñor and Ortiz (78.4%). The models proposed 
by Prieto-Torres and Rojas-Soto (2016) and Rzedowski 
(1990) predicted larger areas, including many areas not 
included in our model (non-coincidence area), with 71.7% 
and 64.4% of overpredicted surface respectively (Fig. 4). 
Model evaluation metrics showed that the INEGI’s (2003) 
proposal is the most similar to ours, with a Kappa value of 
0.54, considered a model fairly similar (Landis & Koch, 
1977). At the other extreme, the model with the lowest 
similarity with respect to ours was that of Prieto-Torres 
and Soto-Rojas (2016), with a Kappa value of 0.34 (Table 
3); in this case Kappa values refer to the similarity with 
respect to our model, not to the actual distribution of STDF.

The model comparison based on omission errors using 
the 1,051 records of the 76 modeled species, indicated 
that proposal of Prieto-Torres and Soto-Rojas (2016) had 
the lowest omission rate (9.1%, 96 out of 1,051 records), 
followed by ours (16.8%, 177 records). The proposal with 
the highest rate of omission errors was that of Villaseñor 
and Ortiz (2014), with 19.7% (207 records, Table 3).

The binomial test carried out with 183 records that 
were not used to generate the models revealed that the 
5 proposals resulted in probability values greater than 
0.5 and were therefore better than a randomly generated 
model. The Prieto-Torres and Soto-Rojas (2016) model 
had the highest prediction probability (0.81, p-value < 
2.20 × 10-16) and the model with the least predictive 
success was the one proposed by Villaseñor and Ortiz 
(2014) (0.55, p-value < 0.001). Our model had a prediction 
probability of 0.74 (p-value << 2.20 × 10-16). All models 
had high probabilities of classifying occurrences better 
than a randomly generated model (Table 3).

Table 4 shows how well the different models 
discriminated between SDTF and points of different 
vegetation types neighboring the biome. The models with 

the highest points’ misclassification were those proposed 
by Rzedowski (1990) and Prieto-Torres and Soto-Rojas 
(2016), 65.7% and 63.6%, respectively. Our model 
presented intermediate confusion (36%), compared to 
the other models. The model that presented the lowest 
commission error was INEGI (2003) with 14.8% confusion. 
The type of vegetation with the highest number of points 
erroneously classified as SDTF was Quercus forest.

Figure 2.  Potential distribution of the seasonally dry tropical 
forest (blue area) in the state of Michoacán obtained with the 
assembly of 76 individual species ecological niche models. The 
red circles show the occurrence points used in the modeling of 
the species considered.

Figure 3. Number of species characteristic of the seasonally 
dry tropical forest (Table 1). The red color shows the areas of 
highest concentration of species (> 28), while the areas of lower 
concentration are shown in yellow.
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Table 3
Percentages of the statistical tests using 183 occurrence points of species characteristic of the seasonally dry tropical forest in 
Michoacán. These records were not used for models generation of the 76 species. The percentage of omission errors of each model 
is also indicated, considering in addition the total of points used to run the models.

Models Kappa Binomial test p-value < 0.5 % Omission
Rzedowski 0.35 0.62 8.80 × 10-07 18.36
INEGI 0.54 0.58 0.0001004 17.98
Villaseñor and Ortiz 0.41 0.55 0.001501 19.70
Prieto-Torres and Soto-Rojas 0.34 0.81 2.20 × 10-16 9.13
This paper 1.00 0.74 2.20 × 10-16 16.84

Table 4
Collecting points classified as part of the biome by different proposals of distribution of the seasonally dry tropical forest. The 
number of erroneous points assigned to the biome per type of vegetation and the percentage of confusion considering the total points 
erroneously classified are indicated. BTSC = Tropical sub-deciduous forest; BQ = Quercus forest, BMM = humid mountain forest, 
MXE = xerophytic scrub.
Models BTSC (373) BQ (1,806) BMM (118) MXE (23) Total % confusion
Rzedowski 275 1,214 21 14 1,524 65.7
INEGI 368 19 1 7 345 14.9
Villaseñor and Ortiz 156 636 2 13 807 34.8
Prieto-Torres and Soto-Rojas 370 1,087 9 9 1,475 63.6
This paper 291 535 1 7 834 35.9

Figure 4. Comparison of the different proposals of distribution of the seasonally dry tropical forest in Michoacán with the potential 
distribution obtained in this study: A) Rzedowski (1990) model, B) INEGI (2003), C) Villaseñor and Ortiz (2014), D) Prieto-Torres 
and Soto-Rojas (2016). In all figures the orange color indicates the coincident areas, the lilac color indicates areas predicted by our 
model non-coincident with the proposed model, and the green areas the exclusive areas of each model not recorded by our model.
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Discussion

The assembly of individual ecological niche 
models turned out to be a useful technique to find the 
environmentally suitable distribution of the SDTF in 
Michoacán. Such assembly of models is a widely used 
technique that identifies spatial patterns of species that 
characterize a community (Clark et al., 2014; D'Amen et 
al., 2015; Ferrier & Guisan, 2006; Franklin, 1995; Guisan & 
Zimmermann, 2000; Jiménez-Alfaro et al., 2018). A biome 
like SDTF is characterized by having well defined climatic 
conditions (Challenger & Soberón, 2008; Gurevitch et 
al., 2002); the species endemic or characteristic to it, 
due to their specific requirements, are good indicators of 
environmental conditions of the biome. One disadvantage 
attributed to this technique is that the community-level 
prediction can accumulate the errors from each individual 
model (Pottier et al., 2013). However, the assembly of 
models presents an important advantage in that the species 
that make up the community are identified, and therefore 
its composition is known, which for conservation issues is 
of great importance (D'Amen et al., 2015).

The use of species that are endemic to and characteristic 
of the SDTF in Michoacán to delimit its distribution 
resulted in a statistically well-supported model. This is 
mainly because the species considered are characterized 
by their specific environmental conditions; the smaller 
geographical ranges characterizing such species, offer 
complete scenarios about their distribution, allowing 
to capture more realistically the greater part of their 
environmental niche (Lomba et al., 2010). Lomba et 
al. (2010) discussed that the use species that are rare or 
have a restricted distribution, as is the case in species 
that are endemic or exclusive to a habitat, provides 
better projections across scales. These models with good 
predictive capacity lead to more accurate predictions about 
the dynamics of these species and the communities where 
they live.

In the geographical overlap test, although our model 
had a high degree of coincidence with that proposed by 
Prieto-Torres and Rojas-Soto (2016), the Prieto-Torres and 
Rojas-Soto model had a larger overestimated area. These 
authors included in their model species not restricted to the 
SDTF biome, such as Enterolobium cyclocarpum (Jacq.) 
Griseb. and Lysiloma divaricatum (Jacq.) J.F. Macbr., 
which are also recorded in contiguous temperate forests 
(Gopar-Merino & Velázquez, 2016). The use of widely 
distributed species can lead to multiple vegetation types 
being lumped together as one (Clark et al., 2014). The 
overestimation caused by the use of species with wide 
distribution increases the probability that when comparing 
an adjusted model characteristic of a biome, with a model 

in which species shows broad environmental conditions, 
results have greater coincidence in area. On the other hand, 
the overestimation observed in the proposals of Rzedowski 
(1990), INEGI (2003) and Villaseñor and Ortiz (2014), 
mostly observed in the southern and northwestern parts of 
the state, may be the result of errors due mainly to severely 
fragmented habitats (Mas et al., 2017), e.g. difficulty in 
distinguishing SDTF from secondary vegetation derived 
from SDTF or subtropical scrubs derived from Quercus 
forests (Challenger & Soberón, 2008; Trejo & Dirzo, 
2000).

The Kappa statistics suggested that the model most like 
ours was the INEGI (2003) model. This statistic estimates 
classification errors when using one model to predict the 
other, so each of these models had a moderate capacity 
to predict the other, which involves both identifying 
the location of the SDTF as well as the omission and 
commission errors. On the other hand, the low value of 
Kappa for the model of Prieto-Torres and Soto-Rojas 
(2016), may be the result of high rates of commission 
errors with respect to our model, that is, a high percentage 
of area predicted by their model but not by ours. The high 
rates of commission errors translate into overestimation 
(Anderson et al., 2003), which in this case may be due to 
the use of widely distributed species to generate the model.

The omission error test favors the proposal of 
Prieto-Torres and Soto-Rojas (2016), inevitable with 
an overestimated model. The model had a larger total 
predicted area, increasing the probability of more points 
falling within the area proposed by this model, compared 
to tighter models such as the Rzedowski model (1990) 
and our model. The low rates of omission errors of Prieto-
Torres and Soto-Rojas (2016) model with respect to ours, 
may also be due to the less restrictive threshold they used 
(“fixed omission value 5”) to obtain the binary models they 
used to determine the SDTF distribution. This lax omission 
value (0.05) contrasts with the more restricted values with 
which we convert the models to binary (minimum 0.09, 
maximum 0.7, average 0.4), which caused a higher rate 
of omission errors in our STDF model. Another test that 
also favors the proposal of Prieto-Torres and Soto-Rojas 
(2016) is the binomial test, also surely because the greater 
predicted surface increases the probability that more points 
fall within the area predicted by the model, and therefore 
more points are correctly classified when they should be 
considered incorrectly placed.

The commission errors test favors the INEGI (2003) 
proposal; this delimitation confuses the SDTF with other 
plant communities less frequently than the other models. 
In contrast, Rzedowski (1990) and Prieto-Torres and 
Soto-Rojas (2016) more frequently determine localities 
of other biomes as part of the SDTF (Table 4). It is likely 
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that including more generalist and widely distributed 
species resulted in a higher percentage of commission 
errors (64%), when compared with localities of neighbor 
biomes (Table 4). For example, Cochlospermum vitifolium 
(Willd.) Spreng., Enterolobium cyclocarpum (Jacq.) 
Griseb., Haematoxylum brasiletto H. Karst., Ipomoea 
wolcottiana Rose, and Lysiloma watsonii Rose, used in 
model’s generation by these authors, are widely distributed 
in 3 or more biomes other than SDTF. These species’ 
models include environmental conditions from other 
biomes, mistakenly transferring these characteristics to the 
analysis and leading to an overestimated model.

Broadly distributed species are difficult to model 
because both their ecological and environmental 
characteristics affect the accuracy of the model compared 
to species of restricted distribution (Hernández et al., 2006; 
Segurado & Araujo, 2004; Thuiller et al., 2004). A high 
rate of commission errors can have negative consequences 
for conservation because they would be defining areas as 
potentially important for a species or a group of species 
when that species or group of species is not actually present 
(Kramer-Schadt et al., 2013). Accordingly, the appropriate 
selection of the species to be considered to model a plant 
community with specific characteristics can help to obtain 
more accurate conclusions (Aitken et al., 2007; Lomba et 
al., 2010; Mateo et al., 2011).

An additional problem with the comparison of 
proposals on the geographical definition of the SDTF 
is that the techniques applied are difficult to replicate. 
Sometimes the proposals have been elaborated based on 
the opinion and experience of a group of experts (for 
example Rzedowski, 1990), or require high investment and 
too much time to conduct vegetation censuses to define it, 
which are not always convincing due to non-uniformity in 
data collection (for example INEGI, 2003). Although the 
model of Prieto-Torres and Rojas-Soto (2016) was favored 
by the highest number of validation tests, it does not mean 
that it is the model that best represents the distribution of 
the SDTF in Michoacán. These tests favored this proposal 
because it was biased by the overestimation of the model 
by using species of wide distribution. The overestimation 
led to more successfully predicted points in the omission 
and binomial errors tests, but it also resulted in greater 
confusion and that records of species from other contiguous 
biomes were classified as SDTF. This made it the second-
least adequate proposal (following Rzedowski’s) of the 
potential geographical distribution of SDTF in Michoacán.

Only 8.5% (2,856 km2) of the area with the highest 
concentration of species richness (> 28 species) is within 
a protected natural area (the Zicuirán-Infiernillo Natural 
Reserve). Given that SDTF is considered one of the most 
important and endangered biomes, especially due to its high 

degree of endemism (Cué-Bär, Villaseñor, Morrone et al., 
2006; DRYFLOR et al., 2016; Olson et al., 2000),  results 
discussed here can be used to make proposals for ANPs 
in the areas with the highest concentration of endemic 
species. There are currently no protected areas in the Balsas 
Depression and the Southern Coastal Range, where there 
was a high concentration of characteristic species.

Modeling the potential distribution of species at the 
community level allows for effective forecasting of factors 
that threaten biodiversity such as climate change, as well as 
providing knowledge on the functioning of the ecosystem 
(D'Amen et al., 2015). That is why it is important to 
make a rigorous selection of the species integrated to the 
algorithms for modeling the distribution of communities. 
The consideration of endemic and characteristic species of 
a plant community, described by its specific requirements 
(for example the SDTF), provide results closer to the 
observed data than those found when widely distributed 
species are considered. More precise models will surely 
allow for more accurate conservation proposals of 
potentially important areas due to their species richness.
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