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Abstract
Beta diversity is often a dominant characteristic in mountain systems and naturally fragmented ecosystems. 

However, natural protected areas are traditionally designed to protect ecosystems with high alpha and low beta 
diversity. Recent information about dung beetles of the Transmexican Volcanic Belt was used to identify the most 
suitable strategy for the conservation of insect biodiversity in montane and beta-diverse ecosystems. Mean alpha 
diversity by mountain represents 38% of regional diversity. Most of the variation in beta diversity is explained because 
each mountain represents a unique habitat hosting a highly differentiated community. National parks appear to be 
inefficient to protect the high beta diversity shown by Mexican temperate mountains, especially for insect communities 
adapted to fragile ecosystems. The Archipelago Reserve scheme seems to be a suitable alternative to protect montane 
entomofauna and beta-diverse ecosystems. Our study reveals beta diversity patterns and complementarity among sites 
in a montane system, representing a first step to detect a suitable region for establishing an Archipelago Reserve in 
the Transmexican Volcanic Belt. Nevertheless, an analysis that matches current diversity patterns and protected areas 
is required to establish the best configuration for future reserves.

Keywords: Beta diversity; Biodiversity conservation; Mountain forests; National Park; Biosphere Reserve; Dung 
beetles; Scarabaeoidea

Resumen
La diversidad beta suele ser un elemento dominante en sistemas tropicales de montaña y ecosistemas fragmentados. 

Sin embargo, las áreas naturales protegidas fueron diseñadas para proteger ecosistemas con elevada diversidad alfa 
y diversidad beta reducida. Utilizamos información reciente de los escarabajos del estiércol de la Faja Volcánica 
Transmexicana, para determinar la estrategia de conservación más adecuada para la conservación de la entomofauna 
de montaña y ecosistemas beta-diversos. La diversidad alfa promedio por montaña representa 38% de la diversidad 
regional. La diferencia geográfica entre montañas explica la mayoría de la variación en diversidad beta (51%, p < 
0.001). Aparentemente, los parques nacionales son ineficientes para proteger la elevada diversidad beta que caracteriza 
a las montañas templadas de México, especialmente en comunidades de insectos adaptadas a ecosistemas de montaña 
frágiles. El esquema de Reservas archipiélago podría ser una alternativa. Nuestro estudio representa un primer paso 
para detectar regiones adecuadas para establecer una Reserva archipiélago en la Faja Volcánica Transmexicana. Sin 
embargo, son necesarios análisis espaciales para determinar adecuadamente la configuración de nuevas reservas.
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Introduction

Montane systems represent a useful model for 
analyzing the interaction of ecological and evolutionary 
factors on diversity patterns variation. Mountains differ in 
terms of age, size, historical stability, climatic conditions 
and topography, reason why they represent “natural 
laboratories” for examining the factors that promote the 
diversification and maintenance of biota (Graham et al., 
2014). Montane biota distribution depends strongly on its 
current ecological and spatial structure, but also on its 
geographic history (Halffter, 1987; Mastretta-Yanes et al., 
2015). In the dynamic processes that have given rise to 
the Mexican Transition Zone (MTZ), the mountains are 
occupied by lineages with different evolutionary history 
and origin than those occupying the lowlands. The MTZ 
temperate mountains play a main role as a penetration path 
for the Holarctic biota through the horizontal colonization 
process, where mountains were colonized during interglacial 
periods by lineages originated in higher latitudes. 
The Neotropical biota is scarcely represented on MTZ 
temperate mountains because of the vertical colonization 
process, where lineages from surrounding lowlands at 
the same latitude colonize mountains, being limited by 
physiological restrictions related to evolutionary history 
(Escobar et al., 2007; Halffter, 1987; Mastretta-Yanes et 
al., 2015; Moctezuma, Halffter et al., 2016). In addition, 
the MTZ mountains act as differentiation and speciation 
areas, especially in the case of the Transmexican Volcanic 
Belt (TMVB). The historical-geographic dynamic of the 
mountains can promote the appearance of endemism 
centers in fragile and naturally fragmented ecosystems, 
which are particularly susceptible to the impact of climatic 
change (García-López et al., 2013; García-Robledo et al., 
2016; McCain & Colwell, 2011). In mountain systems, 
the beta component makes a prominent contribution to 
biological biodiversity because of processes of isolation 
and speciation (García-López et al., 2013; Mastretta-
Yanes et al., 2015).

The National Park model appeared during the 19th 
century, as a response for conservation purposes to protect 
natural sources and scenic beauty of landscapes and for the 
benefit and enjoyment of the people. This model concept was 
expanded in the 1960’s and 1970’s with a strong influence 
of the classic theory of Island Biogeography (Losos & 
Ricklefs, 2010; MacArthur & Wilson, 1967; Whittaker 
& Fernández-Palacios, 2007). Since then, the application 
of Island Biogeography to the design of National Parks 
favors the protection of large size areas: the larger the 

surface of the conservation unit, the more species it will 
contain, and the more resilient against external changes 
(Higgs, 1981). Therefore, a debate focused on the relative 
value of single large or several small refuges (SLOSS) 
aroused. But the SLOSS debate concluded during the late 
1980’s and nature reserve size became irrelevant although 
it achieves conservation goals such as the keystone species 
population viability, saving the largest possible fraction of 
a community and including corridors for facilitating gene 
flow and dispersal of individuals between reserves (Soulé 
& Simberloff, 1986). 

Derivations of the island biogeography theory do not 
combine the ecological elements with productive activities 
(apart from tourism) in the planning of conservation 
(Halffter, 2002, 2005; Higgs, 1981; Whittaker & Fernández-
Palacios, 2007). Given this limitation, UNESCO’s Man 
and Biosphere Program (MAB) developed and put into 
practice in the 1970’s with the concept of the Biosphere 
Reserve, has been modified over the years. In its current 
format, each Biosphere Reserve includes 1 or several core 
zones strictly dedicated to conservation, and buffer zones 
necessary to ensure the permanence of the core zones in 
the face of the influences of anthropic changes, as well 
as 1 or several areas dedicated to sustainable productive 
activities, thus making the conservation of the “natural 
capital” compatible with its use (Halffter, 1984, 2005). 
However, although the Biosphere Reserve (particularly 
the Mexican modality; Halffter, 1984) was an innovative 
approach in many aspects, they maintain the same approach 
as modern National Parks in terms of design, favoring 
large areas for conservation purposes. A failure of the 
Biosphere Reserve and the National Park models lies in the 
fact that both area types were not conceived considering 
the complementarity between the alpha, beta and gamma 
components of biological diversity.

Faced with the need to protect ecosystems where even 
an extensive area cannot comprise all of the regional 
diversity because of a high species turnover (e.g., mountain 
systems), the Archipelago Reserve model arises (Halffter, 
2005, 2007). The Archipelago Reserve model is defined 
as a broad group of protected areas that seek to fully 
represent regional diversity through complementarity. In 
a social and political context, the Archipelago Reserve 
aims to be a driver to change the normativity models 
for land ownership and for currently protected areas, 
to increase interconnectivity between fragile ecosystem 
remnants and fragments. The Archipelago Reserve model 
seeks to protect traditional and rustic agroecosystems that 
conserve a high biodiversity, enhancing the appreciation 
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of productive practices and achieving the sustainable 
development (Halffter, 2007; Peresbarbosa et al., 2007). 

Due to the lack of knowledge about montane 
diversity patterns and its different components in the 
design of protected areas, it is necessary to reconsider 
the configuration strategy of these areas. In this article, 
we suggest a protection model taking as a study case 
some mountains of the eastern TMVB and the southern 
Sierra Madre Oriental. We reanalyzed the information 
generated in this mountain area using dung beetles as a 
focal group in previous biodiversity research (Arriaga-
Jiménez et al., 2018; Moctezuma, Halffter et al., 2016). 
Therefore, a series of questions developed: How are the 
diversity patterns of insect communities in these mountain 
systems? What are the geographic factors influencing 
these diversity patterns? What would be the most suitable 
strategy for the conservation of diversity, according to the 
observed results? These ideas lead us to discuss the best 
conservation model for the mountain ranges of central 
Mexico and ecosystems with similar diversity patterns. 

Materials and methods

As a study area, we chose the eastern part of the TMVB 
(Fig. 1). This is a mountain chain in which hundreds of 
volcanic structures are present, with different ages (from 
the Miocene to the present) and ecological conditions 
(Mastretta-Yanes et al., 2015). The TMVB has presented 
periods of fragmentation and vicariance, with subsequent 
reconnection and colonization during interglacial events 
(Arriaga-Jiménez et al., 2016; Halffter, 1987; Mastretta-
Yanes et al., 2015; Moctezuma, Halffter et al., 2016). 
Therefore, the TMVB represents for the North American 
montane entomofauna a colonization route and an 
important center of endemism and diversification, as well 
as presenting naturally fragmented ecosystems (Halffter, 
1987; Corona et al., 2007; Escalante et al., 2009; Ruiz-
Sánchez & Specht, 2013). 

The eastern region of the TMVB encompasses some 
of the highest peaks and largest forested areas of this 
mountain chain, including Pico de Orizaba (5,640 m), 
Sierra Negra (4,580 m), La Malinche (4,440 m), Cofre 
de Perote (4,220 m), Las Derrumbadas (3,485 m) and El 
Pinal (3,280 m). Three important protected areas have 
been established in this region: La Malinche National Park 
(45,711 ha), Pico de Orizaba National Park (19,601 ha) 
and Cofre de Perote National Park (11,550 ha) (Inafed, 
2010; Neira-Jáuregui, 2012; Semarnat & Conanp, 2016).

Dung beetles (Coleoptera: Scarabaeinae, Aphodiinae 
and Geotrupidae) are a highly diverse group of insects with 
high functional value for productive systems: they perform 
cleansing and fertilization of the soil, bioturbation, nutrient 

cycling, pest control and seed dispersion (Beynon et al., 
2015; Nichols et al., 2008; Ridsdill-Smith & Edwards, 
2011; Scholtz et al., 2009). In addition, dung beetles can 
be evaluated with standardized methods for the study of 
diversity (Favila & Halffter, 1997; Halffter & Favila, 1993; 
Nichols & Gardner, 2011; Spector, 2006). A considerable 
knowledge of dung beetles in the eastern region of the 
TMVB has been achieved, thanks to decades of intensive 
collection (Arriaga-Jiménez et al., 2016, 2018; Escobar 
et al., 2007; Halffter et al., 1995; Lobo & Halffter, 2000; 
Martín-Piera & Lobo, 1993; Moctezuma, Halffter et al., 
2016; Moctezuma, Rossini et al., 2016; Sánchez-Huerta 
et al., 2015). As a result, we used information available 
in Moctezuma, Halffter et al. (2016) and Arriaga-Jiménez 
et al. (2018) that was obtained with similar methodology 
in 6 different mountains (Fig. 1): La Malinche, El Pinal, 
Las Derrumbadas, Cofre de Perote, Pico de Orizaba and 
Sierra Negra. On each mountain, 2 study sites were located 
on the eastern slope and 2 on the western slope (Table 1).

In order to evaluate the completeness of the inventories, 
we performed the method of sample coverage (Ĉm). This 
produces an estimate of the proportion of the total number 
of individuals of a community that belongs to the species 
represented in the sample, and allows direct comparison 
among samples of the same completeness, with a lower 
bias than traditional rarefaction methods. As a result, Ĉm 
allows robust estimates of the biodiversity of communities 
to be produced (Chao & Jost, 2012; Chao et al., 2014).

In order to determine diversity patterns, we estimated 
species richness. This parameter is considered a diversity 
measure (qD) of the order q = 0, forming part of the 
Hill Numbers, and one that is insensitive to species 
frequency (Hill, 1973; Jost, 2006). We contrasted the 
richness (0D) observed on each mountain, in protected 
and unprotected areas, with the regional diversity of the 
TMVB, through a diversity accumulation curve (Chao et 
al., 2014; Colwell et al., 2012). In order to estimate the 
magnitude of the contribution of the local diversity and 
of the turnover of species in the TMVB, we performed a 
multiplicative partition of diversity (Jost, 2007; Jost et al., 
2010; Whittaker, 1972):  

0Dγ = 0Dα x 0Dβ

where 0Dγ: gamma diversity, 0Dα: alpha diversity, 0Dβ: 
beta diversity. 

We considered 0Dγ to be the regional diversity of the 
TMVB, 0Dα the mean diversity per mountain and 0Dβ 
the species turnover between mountains. We calculated 
the 95% confidence intervals for all of the estimates of 
diversity (CI95%), given that these allow statistically 
rigorous comparisons (Colwell et al., 2012; Wasserstein 
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& Lazar, 2016). We used the packages INEXT and 
VEGETARIAN with 1000 randomizations as parameters 
(Charney & Record, 2014; Hsieh et al., 2013).

Since the study sites present variable geographic 
conditions (different mountains, elevations and slopes), 
we used a Permanova to determine which factor could 
best explain the variation of the beta diversity (0Dβ). The 
Permanova produces the partition of the dissimilarity 
originating from different sources of variation, and uses 
tests of permutation to evaluate their significance by 
generating pseudo-F (equivalent to the Fisher F), a value 
of probability and an R2 value (effect size) which shows the 
percentage of variation explained by the supplied sources 

of variation. We used the package VEGAN, the Jaccard 
index as a source of dissimilarity and 1,000 permutations 
at a level of α = 0.05 (Anderson, 2001; Anderson et al., 
2006; Oksanen, 2015). We used a principle coordinates 
analysis (PCoA) in order to observe the differences in 
composition of species. Another variable that could be 
related to species turnover but cannot be included in the 
Permanova model is distance between sites. We therefore 
compared the matrix of dissimilarity to the distance 
between sites using a Pearson correlation. All analyses 
were performed with the program R (R Development Core 
Team, 2017).

Results

The inventories had a good sample coverage (regional 
= 0.999, La Malinche = 0.999, El Pinal = 0.999, Las 
Derrumbadas = 1, Cofre de Perote = 0.997, Pico de 
Orizaba = 0.998, Sierra Negra = 0.992). We estimated a 
regional diversity (0Dγ) of 36 ± 1.16 species, a mean alpha 
diversity (0Dα) per mountain equal to 13.67 ± 0.32 species 
and a turnover or beta diversity (0Dβ) equal to 2.63 ± 0.07. 
Mean alpha diversity per mountain represents only 38% of 
the regional diversity. 

The estimates of species richness at the local level 
were very variable; however, all of the mountains of the 
TMBV examined here had a lower diversity than expected 
for a sample taken at random from the regional “pool” 
of species. The volcanoes Pico de Orizaba and Cofre 
de Perote presented the highest species richness of the 
region, while Las Derrumbadas presented the lowest. Sites 
included in national parks present lower species richness 
than those located outside these areas, and a lower richness 
than expected by chance (Fig. 2).

We found differences in the sources of variation for 
the beta diversity (Table 2). It appears that the determinant 
factor for species turnover are the distinct mountains, 
which explains a majority of the study system variation (R2 

= 0.51, p < 0.001). Elevation was statistically significant 
(p = 0.005), but its effect size is low (R2 = 0.06). We did 
not find a significant effect for the factor slope or for the 
interactions between factors (Fig. 3). On comparison of the 
influence of geographic distance on the dissimilarity among 
sites (Fig. 4), we did not find a significant relationship 
between the 2 variables (rho = 0.042, p = 0.49).

Discussion

With this study, we can infer that temperate National 
Parks are not particularly efficient in terms of protecting the 
montane entomofauna in Mexico. This conclusion is based 
on the fact that National Parks are established in large areas 

Figure 1. Study sites (Arriaga-Jiménez et al., 2018; Moctezuma, 
Halffter et al., 2016) and protected areas in the eastern part of the 
Transmexican Volcanic Belt: a) orographic landscape features 
highlighting some of the highest mountains, b) regional land use. 
Unprotected mountains and native vegetation could be utilized 
to establish a system of interconnected islands in an Archipelago 
Reserve for the study area.
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overlapped in 1 or 2 mountains. In addition, they generally 
have their lower limit at very high elevations, leaving the 
zones below unprotected. We observed that national parks 
established on adjacent mountains (Pico de Orizaba and 
Cofre de Perote national parks) could protect redundant 
insect communities presenting a low dissimilarity in their 
species communities. Our study reveals that beta diversity 
patterns and complementarity among sites in a mountain 
system could represent a first step to detect a suitable 
region to establish an Archipelago Reserve. Nevertheless, 
future spatial analysis that match beta diversity patterns 
and current protected area coverage, are required in 
order establish the best spatial configuration for future 
Archipelago Reserve (Arriaga-Jiménez et al., 2018).

Individual mountains make a significant contribution 
to regional diversity, because of the high species turnover 
among them. Indeed, it is possible that we may be severely 
underestimating the species turnover in the Transmexican 

Volcanic Belt. Our study included 6 mountains with 
highly complete dung beetle inventories, although the 
Transmexican Volcanic Belt encompasses hundreds of 
different volcanic structures with distinct elevations, 
isolation degrees, geological ages and ecological conditions 
that have never been sampled (Mastretta-Yanes et al., 
2015). If this assumption is confirmed, the protection of 
regional diversity provided by the national parks could be 
very deficient since these constructs leave a large number 
of montane insect species and communities unprotected. 

In our study, we found a high species turnover 
associated with the change among mountains: each 
mountain represents a unique habitat hosting a highly 
differentiated community. This result is explained because 
during interglacial periods species can be isolated in the 
mountains, triggering the process of vicariance and leading 
to unique insect communities (Arriaga-Jiménez et al., 2016; 
Kohlmann et al., 2018; Lobo & Halffter, 2000; Mastretta-

Table 1
Geographic characteristics of the study sites located in the mountains of the Transmexican Volcanic Belt in Central Mexico, and 
information of protection status is included. NP: Protected by National Park.
Site Mountain Slope Elevation Latitude Longitude NP

1 Cofre de Perote Eastern 2700 19°25’00”  N 97°08’40”  W no
2 Cofre de Perote Eastern 3200 19°30’05”  N 97°07’15”  W yes
3 Cofre de Perote Western 2700 19°30’04”  N 97°13’47”  W no
4 Cofre de Perote Western 3400 19°27’40”  N 97°10’43”  W yes
5 La Malinche Eastern 2800 19°15’58”  N 97°58’07”  W yes
6 La Malinche Eastern 3200 19°14’38”  N 97°59’35”  W yes
7 La Malinche Western 2800 19°14’35”  N 98°06’10”  W yes
8 La Malinche Western 3400 19°15’29”  N 98°01’46”  W yes
9 Pico de Orizaba Eastern 2600 19°02’16”  N 97°10’23”  W no
10 Pico de Orizaba Eastern 3300 19°02’40”  N 97°12’05”  W no
11 Pico de Orizaba Western 2800 19°03’37”  N 97°23’25”  W no
12 Pico de Orizaba Western 3400 19°04’18”  N 97°19’02”  W yes
13 Sierra Negra Eastern 2800 18°54’42”  N 97°18’43”  W no
14 Sierra Negra Eastern 3400 18°57’40”  N 97°17’34”  W yes
15 Sierra Negra Western 2800 18°59’28”  N 97°24’29”  W no
16 Sierra Negra Western 3300 19°00’34”  N 97°20’39”  W yes
17 El Pinal Eastern 2700 19°08’59”  N 97°54’01”  W no
18 El Pinal Eastern 2900 19°09’12”  N 97°54’49”  W no
19 El Pinal Western 2600 19°07’50”  N 97°55’24”  W no
20 El Pinal Western 3000 19°08’47”  N 97°54’44”  W no
21 Las Derrumbadas Eastern 2500 19°17’32”  N 97°26’43”  W no
22 Las Derrumbadas Eastern 2800 19°17’02”  N 97°27’56”  W no
23 Las Derrumbadas Western 2800 19°16’38”  N 97°28’07”  W no
24 Las Derrumbadas Western 2600 19°15’58”  N 97°28’20”  W no



932	 V. Moctezuma et al. / Revista Mexicana de Biodiversidad 89 (2018): 927 - 937
	 https://doi.org/10.22201/ib.20078706e.2018.3.2446

Yanes et al., 2015; Moctezuma, Halffter et al., 2016). It 
has been observed that under this scenario a factor such as 
elevation has a limited role on our study area as a driver 
of species turnover (Escobar et al., 2007; Lobo & Halffter, 
2000; Moctezuma, Halffter et al., 2016). Our results refer 
only to species richness at a regional level, reason why 

the difference in elevation does not influence largely 
the absence/presence of species. Elevation significantly 
modifies the ensemble of species at local level. 

The patterns of a high species turnover observed in 
the Transmexican Volcanic Belt are not exclusive to 
dung beetles. These patterns can be observed in other 
groups, such as other Coleoptera (Corona et al., 2007; 
Gutiérrez-Velázquez et al., 2012; Marshall & Liebherr, 
2000; Morón, 2013), fleas (Morrone & Gutiérrez, 2005), 
mammals (Escalante et al., 2004; Gámez et al., 2012; 
Rodríguez et al., 2003), and vascular plants (Rzedowski, 
2005; Suárez-Mota et al., 2013). Consequently, the low 
local diversity found for different taxa in the national parks 
of the Transmexican Volcanic Belt is a reality.

In our study, we did not find any association between 
distance increase and beta diversity among locations. At 
a small geographic scale, a complete turnover of species 
can be presented. In Mexico, high beta diversity patters 
have been recognized for different biotic groups and 
geographic regions, leading to the hypothesis of Mexico as 
a beta-diverse country (Arita, 1993, 1997; Arita & León-
Paniagua, 1993; García-de Jesús et al., 2016; Moreno 
& Halffter, 2001; Rodríguez et al., 2003; Sarukhán et 
al., 1996). This is important given the fact that beta 
diversity must be considered a priority in the selection 
of conservation sites, at both large and small scales. Beta 
diversity is not a characteristic exclusive to Mexico or 
to its mountain systems, Melo et al. (2009) reported the 
highest beta diversity of the Americas in mountain areas 
(western North America, Central America and the Andes).

High beta diversity patterns have also been reported 
for highly endangered and fragmented ecosystems and 
agroecosystems, as is the case of the cloud mountain 
forests and shade coffee plantations (Pineda & Halffter, 
2004; Pineda et al., 2005; Rös et al., 2012; Williams-
Linera et al., 2007). Previous studies have proposed that 
cloud forest fragments, secondary forests and traditional 

Figure 2. Species richness at regional level (continuous line) 
and local (squares) in the eastern region of the Transmexican 
Volcanic Belt. In general terms, the diversity of the mountains 
is significantly lower than the regional diversity. The error bars 
represent 95% confidence intervals. TMVB: Transmexican 
Volcanic Belt (0D=36 ± 2.74), LM: La Malinche (0D =15 ± 
1.67), EP: El Pinal (0D = 11 ± 0.7), LD: Las Derrumbadas (0D 
= 1 ± 0), CP: Cofre de Perote (0D = 21 ± 2.77), PO: Pico de 
Orizaba (0D = 21 ± 2.53), SN: Sierra Negra (0D = 13 ± 2.66), NP: 
National Parks (0D = 27 ± 3.23), ONP: outside of the National 
Parks (0D = 30 ± 2.89). 

Table 2
Permanova for the beta diversity considering 3 geographic variables. We used the Jaccard index as a source of dissimilarity and 
1000 permutations as a parameter.
Source of variation df Sum of Sqs Mean Sqs Pseudo-F R2 p
Mountain 5 4.112 0.8224 4.715 0.51 < 0.001
Elevation 1 0.541 0.541 3.104 0.067 0.005
Slope 1 0.291 0.291 1.668 0.036 0.117
Mountain: elevation 5 1.166 0.233 1.337 0.145 0.154
Mountain: slope 5 0.863 0.173 0.989 0.107 0.502
Elevation: slope 1 0.221 0.221 1.268 0.027 0.244
Residuals 5 0.872 0.174 0.108

Total 23 8.066 1
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coffee plantations can preserve complementary regional 
biodiversity (Williams-Linera et al., 2007). Rös et al. 
(2012) and suggested that Archipelago reserves could lead 
to the integration of heterogeneous landscapes, ensuring 
cloud mountain forest protection and the sustainable 
development. Bandeira et al. (2005) reported that a 
combination of factors, such as human management, 
original stand cover and development stage, can promote 
a high beta diversity in a coffee plantations system.

The Brazilian Atlantic Forest is one of the most 
fragmented biodiversity hotspots, but a high beta diversity 
among fragments allows for the permanence of regional 
species pool (Beca et al., 2017; Da Silva & Medina, 2016; 
Filgueiras et al., 2010). The Archipelago Reserve model 
may be able to protect the Atlantic forest fragments and 
to enhance connectivity through restoration measures 
(Beca et al., 2017). Human-disturbed and fragmented 
Mesoamerican tropical rain forests can be candidates to 
be adequately protected under the Archipelago Reserve 
model, since they can support fragile communities that 
maintain regional diversity (Arroyo-Rodríguez et al., 

2012, 2013; Garmendia et al., 2013; Navarrete & Halffter, 
2008; Sánchez-de Jesús et al., 2016). Archipelago reserves 
could also help protect the Madagascan tropical forests, 
which are recognized by its endemic and highly diverse 
biota. Studies have reported a high beta for Malagasy ant 
and dung beetle communities (Fisher, 1996; Viljanen et 
al., 2010). The Archipelago reserves could be suitable to 
protect transition zones between biogeographic regions 
(Ferro & Morrone, 2014), since they are characterized by 
the presentation of a high species turnover. This transition 
zones not only are outstanding by their beta diversity, but 
they are expected to preserve high phylogenetic diversity 
and an important number of endemisms (Ferro & Morrone, 
2014; Kreft & Jetz, 2013). Therefore, transition zones 
should be considered a priority for world conservation 
strategies. 

Beta-diverse ecosystems are under strong pressure 
from anthropic activities. However, productive and non-
productive schemes can contribute to conserve insect 
communities within a landscape, since a diverse mosaic 
of agro-environmental schemes can provide a large species 
pool while guarantee financial benefits from production 
and subsides (Mader et al., 2017). Consequently, promotion 
of low impact activities under a scheme of conservation 
is vital. Biosphere Reserves allow an approach towards 

Figure 4. Relationship between distance and dissimilarity in the 
different collection sites of the mountains of the Transmexican 
Volcanic Belt. The contribution of distance increase to species 
turnover is poor and non-significant. The Jaccard index was used 
as a source of dissimilarity.

Figure 3. The evaluation of the beta diversity demonstrated that 
the difference between different mountains could have a large 
influence on the patterns of diversity observed, since it explains 
more than 50% of the variation estimated in the eastern region of 
the Transmexican Volcanic Belt. Given the fact that the position 
of the objects within the PCoA graph implies dissimilarity, we 
observed high dissimilarity within a group formed by 2 mountains 
(CP, PO). LM: La Malinche, EP: El Pinal, LD: Las Derrumbadas, 
CP: Cofre de Perote, PO: Pico de Orizaba, SN: Sierra Negra.
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the sustainable use of natural resources; however, they 
lack the appropriate design for protecting regions with 
high species turnover (Halffter 1984, 2002, 2005, 2007), 
because they are designed to protect zones with a high local 
diversity (Halffter, 2007). We therefore consider that the 
establishment of Archipelago reserves in mountain or beta-
diverse ecosystems is an urgent requirement and a priority 
in terms of conservation. In cases such as those discussed 
here, Archipelago reserves must have complementarity 
among their components in order to increase the total 
diversity under protection, with the inclusion of different 
local communities. 

From a biological and a social point of view, the 
Archipelago reserves are a new and attractive proposal 
for biodiversity conservation. Both national parks and 
biosphere reserves sought to protect areas (medium or 
large) with exceptional richness and characteristics, 
while Archipelago reserves seek to protect a set of 
complementary areas, which together represent a unique 
biota. Archipelago reserves are an ecological research 
application facing specific problems, such as those 
discussed in this article. They are not intended to replace 
the approach of a larger area, National Park or Biosphere 
Reserve, but to be supplementary to them (Halffter 2007). 

	 The creation process of Archipelago reserves is 
still incipient. Existing national parks could be integrated 
into a system of Archipelago reserves, establishing 
corridors of connection to protect fragments of natural 
vegetation, riparian zones, canyons, secondary forests and 
traditionally productive systems that have been shown 
to be important refuges of biodiversity (Arellano et al., 
2004; Chazdon, 2014; Filgueiras et al., 2015; Gray et 
al., 2016; Pineda et al., 2005; Rös et al., 2012; Verdú 
et al., 2007). The first worldwide implementation of the 
Archipelago Reserve has been developed in the city of 
Xalapa (Veracruz, Mexico-2015), in which it is intended to 
protect the fragile remnants of the tropical cloud forest and 
productive ecosystems (specially shade coffee plantations) 
through a set of vegetation islands. We hope that this 
work can promote the implementation of the Archipelago 
Reserve on the Transmexican Volcanic Belt, particularly 
for ensuring insect conservation. Additionally, we aim 
to encourage the replication of this conservation model 
in landscapes with high beta diversity, where they can 
complement the already existing natural reserves.
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