Divergencia genética en musarañas (Mammalia: Soricidae) de los bosques húmedos de montaña al norte del Neotrópico

Autores/as

  • Francisco J. Vázquez-Ponce Universidad Nacional Autónoma de México
  • Giovani Hernández-Canchola Lousiana State University Museum of Natural Science
  • Andrea R. Jiménez-Marín Universidad Nacional Autónoma de México Instituto de Biología
  • Lázaro Guevara Universidad Nacional Autónoma de México Instituto de Biología http://orcid.org/0000-0002-5485-7056

DOI:

https://doi.org/10.22201/ib.20078706e.2021.92.3781

Palabras clave:

Bosque de niebla, ADN mitocondrial, Eulipotyphla, Filogeografía, México

Resumen

Las musarañas del grupo Cryptotis mexicanus (Mammalia, Soricidae) están estrechamente asociadas con el bosque húmedo de montaña al norte del Neotrópico. Dentro de este grupo, los estudios filogenéticos han definido un grupo monofilético compuesto por 3 especies: C. nelsoni como hermana del clado C. obscurus - C. mexicanus. El patrón conocido de variación morfológica y las estimaciones de distribución potencial sugieren que su evolución está asociada con los cambios altitudinales inducidos por los últimos ciclos glaciales-interglaciales. En este estudio analizamos 70
secuencias mitocondriales del gen citocromo b para este clado mediante análisis filogeográficos y filogenéticos, esto para evaluar si los valles, cañones y planicies, a lo largo de la distribución de este grupo podrían estar promoviendo su estructura y diferenciación genética. Los resultados indican 4 grupos genéticos, parcialmente congruentes con estudios previos; uno de ellos corresponde a C. nelsoni, mientras que los otros 3 aparecen dentro del clado C. obscurus - C. mexicanus. La divergencia genética entre los 4 grupos sugiere la influencia de algunas barreras geográficas, desde valles y cañones hasta volcanes, que a través de los últimos ciclos glaciales-interglaciales podrían haber conformado el patrón actual de variación genética. Nuestros hallazgos sugieren que la taxonomía entre C. obscurus y C. mexicanus aún no está resuelta. 

Biografía del autor/a

Francisco J. Vázquez-Ponce, Universidad Nacional Autónoma de México

Estudiante de licenciatura

Giovani Hernández-Canchola, Lousiana State University Museum of Natural Science

Postdoctorado

Andrea R. Jiménez-Marín, Universidad Nacional Autónoma de México Instituto de Biología

Técnico académico

Lázaro Guevara, Universidad Nacional Autónoma de México Instituto de Biología

Investigador Asociado 

Citas

Almendra, A. L., Rogers, D. S. y González-Cózatl, F. X. (2014). Molecular phylogenetics of the Handleyomys chapmani complex in Mesoamerica. Journal of Mammalogy, 95, 26–40. https://doi.org/10.1644/13-mamm-a-044.1

Anisimova, M. y Gascuel, O. (2006). Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Systematic Biology, 55, 539–552. https://doi.org/10.1080/10635150600755453

Barber, B. R. y Klicka, J. (2010). Two pulses of diversification across the Isthmus of Tehuantepec in a montane Mexican bird fauna. Proceedings of the Royal Society B: Biological Sciences, 277, 2675–2681. https://doi.org/10.1098/rspb.2010.0343

Barrier, E., Velasquillo, L., Chávez, M. y Gaulon, R. (1998). Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics, 287, 77–96. https://doi.org/10.1016/S0040-1951(98)80062-0

Burgin, C. J., Colella, J. P., Kahn, P. L. y Upham, N. S. (2018). How many species of mammals are there? Journal of Mammalogy, 99, 1-14. https://doi.org/10.1093/jmammal/gyx147

Caballero, M., Lozano-García, S., Vázquez Selem, L. y Ortega, B. (2010). Evidencias de cambio climático y ambiental en registros glaciales y en cuencas lacustres del centro de México durante el último máximo glacial. Boletín de la Sociedad Geológica Mexicana, 62, 359–377. https://doi.org/10.18268/BSGM2010v62n3a4

Campbell, J. A. (1984). A new species of Abronia (Sauria: Anguidae) with comments on the herpetogeography of the highlands of southern Mexico. Herpetologica, 40, 373–381.

Carleton, M. D., Sánchez, O. y Urbano-Vidales, G. (2002). A new species of Habromys (Muroidea: Neotominae) from México, with generic review of species definitions and remarks on diversity patterns among Mesoamerican small mammals restricted to humid montane forests. Proceedings of the Biological Society of Washington, 115, 488–533

Chávez-Pesqueira, M. y Núñez-Farfán, J. (2016). Genetic diversity and structure of wild populations of Carica papaya in Northern Mesoamerica inferred by nuclear microsatellites and chloroplast markers. Annals of Botany, 118, 1293-1306.

https://doi.org/10.1093/aob/mcw183

Choate, J. R. (1970). Systematics and zoogeography of the Middle American shrews of the genus Cryptotis. University of Kansas publications, Museum of Natural History, 19, 195–317. https://doi.org/10.5962/bhl.part.15450

Churchfield, S. (1990). The natural history of shrews. Ithaca, NY: Cornell Univ. Press,

Excoffier, L. y Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Flores-Villela, O. y Martínez-Salazar, E. A. (2009). Historical explanation of the origin of the herpetofauna of Mexico. Revista Mexicana de Biodiversidad, 80, 817–833. https://doi.org/10.111/J.2007-8706

Fluxus Technology Ltd. (2015). Network 5.0.0.0 User Guide. December, 55.

Giarla, T. C. y Esselstyn, J. A. (2015). The challenges of resolving a rapid, recent radiation: empirical and simulated phylogenomics of Philippine shrews. Systematic Biology, 64, 727–740. https://doi.org/10.1093/sysbio/syv029

Guevara, L. (2017). They can dig it: semifossorial habits of the Mexican small-eared shrew (Mammalia: Cryptotis mexicanus). Revista Mexicana de Biodiversidad, 88, 1003–1005. https://doi.org/10.1016/j.rmb.2017.10.012

Guevara, L. (2019). Paleodistribution modelling for planning the growth of natural history collections. Revista Mexicana de Biodiversidad, 90, e902953. http://dx.doi.org/10.22201/ib.20078706e.2019.90.2953

Guevara, L. (2020). Altitudinal, latitudinal and longitudinal responses of cloud forest species to Quaternary glaciations in the northern Neotropics. Biological Journal of the Linnean Society, 130, 615–625. https://doi.org/10.1093/biolinnean/blaa070

Guevara, L. y Cervantes, F. A. (2014). Molecular systematics of small-eared shrews (Soricomorpha, Mammalia) within Cryptotis mexicanus species group from Mesoamerica. Acta Theriologica, 59, 233–242. https://doi.org/10.1007/s13364-013-0165-6

Guevara, L., Cervantes, F. A. y Sánchez-Cordero, V. (2015). Riqueza, distribución y conservación de los topos y las musarañas (Mammalia, Eulipotyphla) de México. Therya, 6, 43–68. https://doi.org/10.12933/therya-15-211

Guevara, L. y Sánchez-Cordero, V. (2018a). Patterns of morphological and ecological similarities of small-eared shrews (Soricidae, Cryptotis) in tropical montane cloud forests from Mesoamerica. Systematics and Biodiversity, 16, 551–564. https://doi.org/10.1080/14772000.2018.1470582

Guevara, L. y Sánchez-Cordero, V. (2018b). New records of a critically endangered shrew from Mexican cloud forests (Soricidae, Cryptotis nelsoni) and prospects for future field research. Biodiversity Data Journal, 6, e26667. https://doi.org/10.3897/BDJ.6.e26667

Guillot, G., Mortier, F. y Estoup, A. (2005). Geneland: a computer package for landscape genetics. Molecular Ecology Notes, 5, 712–715. https://doi.org/10.1111/j.1471-8286.2005.01031.x

Hardy, D. K., González-Cózatl, F. X., Arellano, E. y Rogers, D. S. (2013). Molecular phylogenetics and phylogeographic structure of Sumichrast’s harvest mouse (Reithrodontomys sumichrasti: Cricetidae) based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 68, 282–292. https://doi.org/10.1016/j.ympev.2013.03.028

He, K., Woodman, N., Boaglio, S., Roberts, M., Supekar, S. y Maldonado, J. E. (2015). Molecular phylogeny supports repeated adaptation to burrowing within small-eared shrews genus of Cryptotis (Eulipotyphla, Soricidae). Plos One, 10, 1–13. https://doi.org/10.1371/journal.pone.0140280

Hope, A. G., Stephens, R. B., Mueller, S. D., Tkach, V. V. y Demboski, J. R. (2020). Speciation of North American pygmy shrews (Eulipotyphla: Soricidae) supports spatial but not temporal congruence of diversification among boreal species. Biological Journal of the Linnean Society, 129, 41–60. https://doi.org/10.1093/biolinnean/blz139

Irwin, D. M., Kocher, T. D. y Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 32, 128–144. https://doi.org/10.1007/BF02515385

Jacquet, F., Hutterer, R., Nicolas, V., Decher, J., Colyn, M., Couloux, A. et al. (2013). New status for two African giant forest shrews, Crocidura goliath goliath and C. goliath nimbasilvanus (Mammalia: Soricomorpha), based on molecular and geometic morphometric analyses. African Zoology, 48, 13–29. https://doi.org/10.1080/15627020.2013.11407565

Kumar, S., Stecher, G., Li, M., Knyaz, C. y Tamura, K. (2018). Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096

Lefort, V., Longueville, J. E. y Gascuel, O. (2017). SMS: Smart Model Selection in PhyML. Molecular Biology and Evolution, 34, 2422–2424. https://doi.org/10.1093/molbev/msx149

Librado, P. y Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187

Lorenzo, C., Bolaños-Citalán, J., Navarrete-Gutiérrez, D., Pérez-López, J. A. y Guevara, L. (2019). In search of shrews of Chiapas: analysis of their distribution and conservation. Therya, 10, 121-129. https://doi.org/10.12933/therya-19-717

Mayen-Zaragoza, M., Guevara, L., Hernández-Canchola, G. y León-Paniagua, L. (2019). First record of shrews (Eulipotyphla, Soricidae) in the Sierra de Otontepec, an isolated mountain in Veracruz, Mexico. Therya, 10, 59–64. https://doi.org/10.12933/therya-19-690

Mendelson III, J. R. y Campbell, J. A. (1999). The taxonomic status of populations referred to Hyla chaneque in southern Mexico, with the description of a new treefrog from Oaxaca. Journal of Herpetology, 33, 80–86. https://doi.org/10.2307/1565545

Noguera-Urbano, E. A., Colmenares-Pinzón, J. E., Villota, J., Rodríguez-Bolaños, A. y Ramírez-Chaves, H. E. (2019). The shrews (Cryptotis) of Colombia: What do we know about them? Therya, 10, 131–147. https://doi.org/10.12933/therya-19-760

Ornelas, J. F., Ruiz-Sánchez, E. y Sosa, V. (2010). Phylogeography of Podocarpus matudae (Podocarpaceae): Pre-Quaternary relicts in northern Mesoamerican cloud forests. Journal of Biogeography, 37, 2384–2396. https://doi.org/10.1111/j.1365-2699.2010.02372.x

Ornelas, J. F., Sosa, V., Soltis, D. E., Daza, J. M., González, C., Soltis, P. S. et al. (2013). Comparative phylogeographic analyses illustrate the complex evolutionary history of threatened cloud forests of northern Mesoamerica. Plos One, 8, e56283. https://doi.org/10.1371/journal.pone.0056283

Peterson, A. T., Soberón, J. y Sánchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285, 1265–1267. https://doi.org/10.1126/science.285.5431.1265

Rambaut, A., Drummond, A. J., Xie, D., Baele, G. y Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032

Ramírez-Barahona, S. y Eguiarte, L. E. (2013). The role of glacial cycles in promoting genetic diversity in the Neotropics: the case of cloud forests during the Last Glacial Maximum. Ecology and Evolution, 3, 725–738. https://doi.org/10.1002/ece3.483

Ramírez-Pulido, J., Castillo-Morales, A., Salame-Méndez, A. y Castro-Campillo, A. (2004). Características morfológicas y morfométricas de cinco especies de Cryptotis (Mammalia: Soricomorpha). Acta Zoológica Mexicana, 20, 9–37. https://doi.org/10.21829/azm.2004.2022325

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S. et al. (2012). Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029

Ruiz-Sanchez, E. y Ornelas, J. F. (2014). Phylogeography of Liquidambar styraciflua (Altingiaceae) in Mesoamerica: survivors of a Neogene widespread temperate forest (or cloud forest) in North America? Ecology and Evolution, 4, 311–328. https://doi.org/10.1002/ece3.938

Smith, M. F. y Patton, J. L. (1999). Phylogenetic relationships and the radiation of sigmodontine rodents in South America: evidence from cytochrome b. Journal of Mammalian Evolution, 6, 89–128.

Starcová, M., Vohralík, V., Kryštufek, B., Černá Bolfíková, B. y Hulva, P. (2016). Phylogeography of the alpine shrew, Sorex alpinus (Soricidae, Mammalia). Folia Zoologica, 65, 107–116. https://doi.org/10.25225/fozo.v65.i2.a6.2016

Sullivan, J., Arellano, E. y Rogers, D. S. (2000). Comparative phylogeography of Mesoamerican highland rodents: Concerted versus independent response to past climatic fluctuations. American Naturalist, 155, 755–768. https://doi.org/10.1086/303362

Sullivan, J., Markert, J. A. y Kilpatrick, C. W. (1997). Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Systematic Biology, 46, 426–440. https://doi.org/10.2307/2413690

Vallejo, R. M. y González-Cózatl, F. X. (2012). Phylogenetic affinities and species limits within the genus Megadontomys (Rodentia: Cricetidae) based on mitochondrial sequence data. Journal of Zoological Systematics and Evolutionary Research, 50, 67–75. https://doi.org/10.1111/j.1439-0469.2011.00634.x

Vega, R., McDevitt, A. D., Stojak, J., Mishta, A., Wójcik, J. M., Kryštufek, B. et al. (2020). Phylogeographical structure of the pygmy shrew: revisiting the roles of southern and northern refugia in Europe. Biological Journal of the Linnean Society, 129, 901–917. https://doi.org/10.1093/biolinnean/blz209

Vuilleumier, S. y Fontanillas, P. (2007). Landscape structure affects dispersal in the greater white-toothed shrew: inference between genetic and simulated ecological distances. Ecological Modelling, 201, 369–376. https://doi.org/10.1016/j.ecolmodel.2006.10.002

Woodman, N. (2011). Patterns of morphological variation amongst semifossorial shrews in the highlands of Guatemala, with the description of a new species (Mammalia, Soricomorpha, Soricidae). Zoological Journal of the Linnean Society, 163, 1267–1288. https://doi.org/10.1111/j.1096-3642.2011.00754.x

Woodman, N. y Timm, R. M. (1999). Geographic variation and evolutionary relationships among broad-clawed shrews of the Cryptotis goldmani group. Fieldiana, Zoology, 91, 1–35.

Woodman, N., Matson, J. O., McCarthy, T. J., Eckerlin, R. P., Bulmer, W. y Ordóñez-Garza, N. (2012). Distributional records of shrews (Mammalia, Soricomorpha, Soricidae) from Northern Central America with the first record of Sorex from Honduras. Annals of Carnegie Museum, 80, 207–237.

Descargas

Archivos adicionales

Publicado

2021-12-07

Número

Sección

BIOGEOGRAFÍA