Nesting resource availability for cavity adopter birds in a tropical dry forest of Central Mexico

Autores/as

  • Jannete Medina-Estrada Universidad Nacional Autónoma de México Facultad de Ciencias
  • Daniela Remolina-Figueroa Universidad Nacional Autónoma de México Posgrado en Ciencias Biológicas
  • Patricia Ramírez-Bastida Universidad Nacional Autónoma de México Facultad de Estudios Superiores Iztacala http://orcid.org/0000-0003-1260-3768
  • Leopoldo D. Vázquez-Reyes Universidad Nacional Autónoma de México Facultad de Estudios Superiores Iztacala http://orcid.org/0000-0002-3344-4594

DOI:

https://doi.org/10.22201/ib.20078706e.2022.93.3836

Palabras clave:

Neotropics, nesting resources, secondary cavity nesters, tree cavities, tropical dry forest

Resumen

Nesting resources for cavity-adopter birds commonly have spatial aggregation patterns within tropical dry forests. Spatial aggregation occurs because large trees, carrying large cavities, are restricted within small semideciduous forest areas. In contrast, deciduous forests occupy most of the coverage with smaller trees and cavities. Consequently, semideciduous forest loss could imperil cavity-adopter birds with large bodies. To test this hypothesis, we performed an intensive search in a tropical dry forest in Central-Mexico. We survey five 0.2 Ha transects in both deciduous and semideciduous forest, totalizing a survey of 2 Ha. There were no differences in resource density between deciduous (4 ± 6.51 cavities/Ha) and semideciduous forest (11 ± 6.51 cavities/Ha). However, semideciduous forest cavities had wider entrances and were in larger trees. Besides, 90% of nesting resources for birds with bodies > 6 cm were restricted within the semideciduous forest, including Megascops seductus, an endemic owl, and Ara militaris, a threatened macaw. Bird-excavated cavities were associated with deciduous forest and Pachycereus weberi cacti. In contrast, decay cavities were associated with semideciduous forest and Enterolobium cyclocarpum trees. Our results suggest that the conservation of large-bodied cavity-adopter birds within dry forest depends on semideciduous forest coverage.

Citas

Arizmendi, M. C. & Espinosa de los Monteros, A. (1996). Avifauna de los bosques de cactáceas columnares de Tehuacán, Puebla. Acta Zoológica Mexicana, 67, 25-46.

Balvanera, P., Lott, E., Segura, G., Siebe, C. & Islas, A. (2002). Patterns of b-diversity in a Mexican tropical dry forest. Journal of Vegetation Science, 13, 145-158. https://doi.org/10.1111/j.1654-1103.2002.tb02034.x

Belthoff, J. R. & Ritchison, G. (1990). Nest-site selection by Eastern Screech-Owls in central Kentucky. The Condor, 92, 982-990. https://doi.org/10.2307/1368734

Berlanga, H., Kennedy, J. A., Rich, T. D., Arizmendi, M. C., Beardmore, C. J., Blancher, P. J., Butcher, G. S., Couturier, A. R., Dayer, A. A., Demarest, D. W., Easton, W. E., Gustafson, M., Iñigo-Elias, E., Krebs, E. A., Panjabi, A. O., Rodriguez-Contreras, V., Rosenberg, K. V., Ruth, J. M., Santana-Castellón, E. & Will, T. C. (2010). Saving our shared birds: Partners in Flight tri-national vision for landbird conservation. Cornell Lab of Ornithology.

Bezaury-Creel, J. E. (2010). Las selvas secas del Pacífico mexicano en el contexto mundial. In G. Ceballos, L. Martínez, A. García, E. Espinoza, J. E. Bezaury-Creel & R. Dirzo (Eds.). Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México (pp. 21-40). Fondo de Cultura Económica.

BirdLife International (2020). Ara militaris. The IUCN Red List of Threatened Species 2016: e.T22685548A93079238. Available: https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22685548A93079238.en

BirdLife International (2020). Important Bird Areas factsheet: Papalutla, Sierra de Tecaballo. Available:. http://datazone.birdlife.org/site/factsheet/papalutla-sierra-de-tecaballo-iba-mexico

Cockle, K. L., Martin, K. & Drever, M. C. (2010). Supply of nest holes limits nest density of cavity-nesting birds in primary and logged subtropical Atlantic forests. Biological Conservation, 143, 2851–2857. http://doi:10.1016/j.biocon.2010.08.002

Cockle, K. L., Martin, K. & Wesolowski, T. (2011). Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Frontiers in Ecology and the Environment, 9, 377-382. https://doi.org/10.1890/110013

Cockle, K., Martin, K. & Wiebe, K. (2008). Availability of cavities for nesting birds in the Atlantic forest, Argentina. Ornitologia Neotropical, 19, 269–278.

Cornelius, C., Cockle, K., Politi, N., Berkunsky, I., Sandoval, L., Ojeda, V., Rivera, L., Hunter, M. Jr. & Martin, K. (2008). Cavity nesting birds in neotropical forests: cavities as a potentially limiting resource. Ornitologia Neotropical, 19, 253-268.

de la Parra-Martínez, S. M., Renton, K., Salinas-Melgoza, A. & Muñoz-Lacy, L. G. (2015). Tree-cavity availability and selection by a large-bodied secondary cavity-nester: the Military Macaw. Journal of Ornithology, 156, 489-498. https://doi.org/10.1007/s10336-014-1150-9

Egan, S. (2020). Balsas Screech-Owl (Megascops seductus), version 1.0. In, T. S. Schulenberg, (Ed.): Birds of the World. Cornell Lab of Ornithology. Available: https://doi.org/10.2173/bow.basowl.01

Enkerlin-Hoeflich, E. C. (1995). Comparative ecology and reproductive biology of three species of Amazona parrots in northeastern Mexico (PhD. Thesis). Texas A & M University.

Enríquez, P. L. & Cheng, K. M. (2008). Natural History of the Threatened Bearded Screech-Owl (Megascops barbarus) in Chiapas, Mexico. Journal of Raptor Research, 42, 180-187. https://doi.org/10.3356/JRR-07-30.1

Gehlbach, F. R. & Stoleson, S. H. 2010. Western Screech-Owl (Megascops kennicottii). In J. L. Cartron (Ed.). Raptors of New Mexico (pp. 511-523). University of New Mexico Press.

Gerhardt, R. P., Bonilla-González, N., McAnnis-Gerhardt, D. & Flatten, C. J. (1994). Breeding Biology and Home Range of Two Ciccaba Owls. The Wilson Bulletin, 106, 629-639.

Gibbs, J. P., Hunter, M. L. Jr. & Melvin, S. M. (1993). Snag availability and communities of cavity nesting birds in tropical versus temperate forests. Biotropica, 25, 236-241. https://doi:10.2307/2389188

Gill, F., Donsker, D. & Rasmussen, P. (Eds). (2020). Master list. IOC World Bird List (v10.2). Available: http://www.worldbirdnames.org/

Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9.

Hendricks, P., McAuliffe, J. R. & Valiente-Banuet, A. (1990). On communal roosting and associated winter social behavior of Gray-Breasted Woodpeckers. The Condor, 92, 254-255.

Jiménez-Arcos, V. H., Santacruz-Padilla, S. A., Escalona-López, A., Arizmendi-Arriaga, M. C. & Vázquez-López, L. D. (2012). Ampliación de la distribución y presencia de una colonia reproductiva de la guacamaya verde (Ara militaris) en el alto Balsas de Guerrero, México. Revista Mexicana de Biodiversidad, 83, 864-867. https://doi.org/10.7550/rmb.27460

Leonard, D. L. Jr. (2000). Breeding and life history observations of the Gray-Breasted Woodpecker (Melanerpes hypopolius). Ornitologia Neotropical, 11, 341-348.

Martínez, G. M., Valencia, A. S. & Calónico, S. J. (1997). Flora de Papalutla, Guerrero y de sus alrededores. Anales del Instituto de Biología de la UNAM, Serie Botánica, 68, 107-133.

Meza, L. & López-García, J. (1997). Vegetación y mesoclima de Guerrero. Estudios Florísticos en Guerrero. No. 1. Facultad de Ciencias, UNAM.

Monterrubio-Rico, T. C. & Escalante-Pliego, P. (2006). Richness, distribution and conservation status of cavity nesting birds in Mexico. Biological Conservation, 128, 67-78. https://doi.org/10.1016/j.biocon.2005.09.017

Navarro-Sigüenza, A. G., Rebón-Gallardo, M. F., Gordillo-Martínez, A., Peterson A. T., Berlanga-García, H. & Sánchez-González, L. A. (2014). Biodiversidad de aves en México. Revista Mexicana de Biodiversidad, 85, S476-S495. https://doi.org/10.7550/rmb.41882

Newton, I. (1994). The role of nest sites in limiting the numbers of hole-nesting birds: A review. Biological Conservation, 70, 265-276. https://doi.org/10.1016/0006-3207(94)90172-4

Ortega-Álvarez, R. & Calderón-Parra, R. (2020). Linking biological monitoring and wildlife ecotourism: a call for development of comprehensive community‐based projects in search of sustainability. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00761-7

Pennington, T. D. & Sarukhán, J. (2005). Árboles tropicales de México. Manual de identificación de las principales especies. 3th edition. UNAM. Fondo de Cultura Económica.

Peterson, A. T. & Navarro-Sigüenza, A. G. (2000). Western Mexico: a significant centre of avian endemism and challenge for conservation action. Cotinga, 14, 42–46.

Pineda-Herrera, E., Pérez-Olvera, C. P., Dávalos-Sotelo, R. & Valdez-Hernández, J. I. (2012). Características tecnológicas de la madera de dos especies de Costa Grande, Guerrero, México. Madera y Bosques, 18, 53-71.

Politi, N., Hunter, M. & Rivera, L. (2010). Availability of cavities for avian cavity nesters in selectively logged subtropical montane forest of the Andes. Forest Ecology and Management, 260, 893–906. https://doi.org/10.1016/j.foreco.2010.06.009

Renton, K., Salinas-Melgoza, A., Rueda-Hernández, R. & Vázquez-Reyes, L. D. (2018). Differential resilience to extreme climate events of tree phenology and cavity resources in tropical dry forest: Cascading effects on a threatened species. Forest Ecology and Management, 426, 164-175. https://doi.org/10.1016/j.foreco.2017.10.012

Renton, K. & Brightsmith, D. (2009). Cavity use and reproductive success of nesting macaws in lowland forest of southeast Peru. Journal of Field Ornithology, 80, 1-8. https://doi.org/10.1111/j.1557-9263.2009.00198.x

Rivera-Ortíz, F. A., Oyama, K., Villar-Rodríguez, C. L., Contreras-González, A. M. & Arizmendi, M. C. (2016). The use of tree cavities and cliffs by the Military Macaw (Ara militaris) in Salazares Nayarit, Mexico. Revista Mexicana de Biodiversidad, 87, 540-544. https://doi.org/10.1016/j.rmb.2016.02.002

Rzedowski, J. (2006). Vegetación de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Available: https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf

Salinas-Melgoza, A., Salinas-Melgoza, V. & Renton, K. (2009). Factors influencing nest spacing of a secondary cavity nesting parrot: Habitat heterogeneity and proximity of conespecifics. The Condor, 111, 305-313. https://doi.org/10.1525/cond.2009.090017

Sánchez-Azofeifa, G. A. & Portillo-Quintero, C. (2011). Extent and Drivers of Change of Neotropical Seasonally Dry Tropical Forests. In R. Dirzo, H. S. Young, H. A. Mooney & G. Ceballos (Eds.): Seasonally Dry Tropical Forests: Ecology and Conservation (pp. 45-58). Island Press.

Sánchez-Colón, S., Flores Martínez, A., Cruz-Leyva, I. A. & Velázquez, A. (2009). Estado y transformación de los ecosistemas terrestres por causas humanas. In J. Sarukhán (Coord.): Capital natural de México, vol. II: Estado de conservación y tendencias de cambio (pp. 75-129). CONABIO.

Sandoval, L. & Barrantes, G. (2009). Relationship between species richness of excavator birds and cavity adopters in seven tropical forests in Costa Rica. The Wilson Journal of Ornithology, 121, 75-81. https://doi.org/10.1676/07-165.1

Saunders, D. A., Smith, G. T. & Rowley, I. (1982). The availability and dimensions of tree hollows that provide nest sites for cockatoos (Psittaciformes) in Western Australia. Australian Wildlife Research, 9, 541–556. https://doi.org/10.1071/WR9820541

Schepps, J., Lohr, S. & Martin, T. (1999). Does tree hardness influence nest-site selection by primary cavity nesters? The Auk, 116, 658–665. https://doi.org/10.2307/4089327

Şekercioğlu, C. H., Wenny, D. G. & Whelan, C.J. (Eds.). (2016). Why birds matter. Avian ecological function and ecosystem services. Chicago University Press.

Trejo, I. & Dirzo, R. (2000). Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biological Conservation, 94, 133-142. https://doi.org/10.1016/S0006-3207(99)00188-3

Trejo, I. & Dirzo, R. (2002). Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity and Conservation, 11, 2063-2084. https://doi.org/10.1023/A:1020876316013

van der Hoek, Y., Gaona, G. & Martin, K. (2017). The diversity, distribution and conservation status of the tree-cavity nesting birds of the world. Diversity and Distributions, 23, 1120-1131. https://doi.org/10.1111/ddi.12601

Vázquez, L. & Renton, K. (2015). High density of tree-cavities and snags in Tropical dry forest of western Mexico raises questions for a latitudinal gradient. PLoS ONE, 10, e0116745. https://doi.org/10.1371/journal.pone.0116745

Vázquez-Reyes, L. D., Arizmendi, M. C., Godínez-Álvarez, H. O. & Navarro-Sigüenza, A. G. (2017). Directional effects of biotic homogenization of bird communities in Mexican seasonal forests. The Condor, 119, 275-288. https://doi.org/10.1650/CONDOR-16-116.1

Vázquez-Reyes, L. D., Jiménez-Arcos, V. H., SantaCruz-Padilla, S. A., García-Aguilera, R., Aguirre-Romero, A., Arizmendi, M. C. & Navarro-Sigüenza, A. G. (2018). Aves del Alto Balsas de Guerrero: Diversidad e Identidad de una región prioritaria para la conservación. Revista Mexicana de Biodiversidad, 89, 873-897. https://doi.org/10.22201/ib.20078706e.2018.3.2314

Zwartjes, P. W. & Nordell, S. E. (1998). Patterns of cavity-entrance orientation by Gilded Flickers (Colaptes chrysoides) in Cardón Cactus. The Auk, 115, 119-126. https://doi.org/10.2307/4089117

Descargas

Publicado

2022-02-16

Número

Sección

ECOLOGÍA