Genetic structure and diversity of Calycolpus moritzianus (Myrtaceae) in the north-eastern Andes of Colombia

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2021.92.3635

Palabras clave:

Genetic markers, Myrtales, Northern Andes, Plant diversity, Polymorphism, RAMs

Resumen

The Arrayán tree (Calycolpus moritzianus) is an endemic species from northern South America and it is important for its potential in the medical and cosmetic industry. However, to take advantage of its applied potential different biological aspects, such as genetic diversity, must be characterized. We evaluated 5 RAMs markers on 45 individuals of C. moritzianus collected from 5 locations in Norte de Santander, Colombia, to estimate its genetic diversity. The cluster
analysis indicated heterogeneity between populations; however, Ocaña individuals were genetically more different, when compared with other populations. A multiple correspondence analysis revealed 2 population groups: the first one including individuals from Ocaña, and the second one that includes individuals from Salazar, Chinácota, Pamplonita and Toledo. This last group showed a higher degree of genetic diversity. We found an average heterozygosity (He) of 0.34 and a fixation index (FST) of 0.13 among populations. These results are likely due to the relatively high genetic distance, observed between Ocaña and the other populations, and because of the effect of geographical barriers in the area. This is the first study in population genetics of this important native timber resource in the northern Andes, and provides relevant information for future conservation strategies and its sustainable use.

Biografía del autor/a

Diego Alexander Hernández-Contreras, Universidad del Valle Universidad Nacional de Colombia Universidad de Cundinamarca

Professor Universidad de Cundinamarca.

Researcher.

The Biological Diversity Research Group.Universidad Nacional de Colombia. The Biology of Plants and Microorganism Research Group. Universidad del Valle.

Franklin de Jesús Torres-Torres, Universidad de Pamplona

Universidad de Pamplona. Facultad de Ciencias Básicas. Km 1 via to Bucaramanga, Ciudad Universitaria. A.A. 1046. Pamplona, Norte de Santander, Colombia

Universidad Nacional de Colombia, Sede Palmira. Facultad de Ciencias Agropecuarias. Carrera 32 No 12 - 00 Chapinero, Vía Candelaria. A.A 237. Palmira, Valle del Cauca, Colombia

Mauricio Figueroa-Lozano, Universidad de Pamplona

Universidad de Pamplona. Facultad de Ciencias Básicas. Km 1 via to Bucaramanga, Ciudad Universitaria. A.A. 1046. Pamplona, Norte de Santander, Colombia

Luis Roberto Sánchez-Montaño, Universidad de Pamplona

Universidad de Pamplona. Facultad de Ciencias Básicas. Km 1 via to Bucaramanga, Ciudad Universitaria. A.A. 1046. Pamplona, Norte de Santander, Colombia

Andrés Mauricio Posso-Terranova, University of Saskatchewan

Universidad Nacional de Colombia, Sede Palmira. Facultad de Ciencias Agropecuarias. Carrera 32 No 12 - 00 Chapinero, Vía Candelaria. A.A 237. Palmira, Valle del Cauca, Colombia

University of Saskatchewan, Department of Biology. 112 Science Pl, SK S7N5E2 Saskatoon, SK, Canada, present address

Jaime Eduardo Muñoz-Flórez, Universidad Nacional de Colombia, Sede Palmira

Universidad Nacional de Colombia, Sede Palmira. Facultad de Ciencias Agropecuarias. Carrera 32 No 12 - 00 Chapinero, Vía Candelaria. A.A 237. Palmira, Valle del Cauca, Colombia

Citas

Alam, F., Islam, K., & Rahman, S. (2018). Variability among selective guava (Psidium guajava L.) varieties revealed by morphology and RAPD marker. Jahangirnagar University Journal of Biological Sciences, 7(2), 89–98. https://doi.org/10.3329/jujbs.v7i2.40750

Alfalahi, A., Theer, R., Mohammed, M., Abdullah, M., Dhannoon, O., Hussein, Z., & Drej, M. (2019). Molecular discrimination of maize CMS type and genetic relationship using RAMs markers. IOP Conference Series: Earth and Environmental Science, 388(1), 1–7. https://doi.org/10.1088/1755-1315/388/1/012043

Alves, M., Nizio, D., Brito, F., Sampaio, T., Silva, A., Arrigoni-Blank, M., Carvalho, S., & Blank, A. (2016). Analysis of genetic diversity of a native population of Myrcia lundiana kiaersk. Plants using ISSR markers. Genetics and Molecular Research, 15(4), 1–10. https://doi.org/10.4238/gmr15049198

Ansari, A., Singh, Y., & Singh, N. (2015). Marker based assessment of genetic diversity in aethiopicum and melongena species of genus Solanum. Electronic Journal of Plant Breeding, 6(4), 904–917.

Antonelli, A., Nylander, J., Persson, C., & Sanmartín, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9749–9754. https://doi.org/10.1073/pnas.0811421106

Arnold, P., Kruuk, L., & Nicotra, A. (2019). How to analyse plant phenotypic plasticity in response to a changing climate. New Phytologist, 222(3), 1235–1241. https://doi.org/10.1111/nph.15656

Balloux, F., & Lugon, N. (2002). The estimation of population differentiation with microsatellite markers. Molecular Ecology, 11(2), 155–165. https://doi.org/doi:10.1046/j.0962-1083.2001.01436.x

Bandoni, A. (2000). Los recursos vegetales aromáticos en Latinoamérica: Su aprovechamiento industrial para la producción de aromas y sabores (1a Edición). Buenos Aires, Argentina.

Berg, O. (1854). Revisio myrtacearum americae. Linnaea, 27, 1–799.

Bernal, R., Gradstein, S. R., & Celis, M. (2015). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá.

Bezemer, N., Krauss, S., Phillips, R., Roberts, D., & Hopper, S. (2016). Paternity analysis reveals wide pollen dispersal and high multiple paternity in a small isolated population of the bird-pollinated Eucalyptus caesia (Myrtaceae). Heredity, 117(6), 460–471. https://doi.org/10.1038/hdy.2016.61

Biffin, E., Lucas, E. J., Craven, L. A., Ribeiro da Costa, I., Harrington, M. G., & Crisp, M. D. (2010). Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Annals of Botany, 106, 79–93. https://doi.org/10.1093/aob/mcq088

Bravo, K., Quintero, C., Agudelo, C., García, S., Bríñez, A., & Osorio, E. (2020). CosIng database analysis and experimental studies to promote Latin American plant biodiversity for cosmetic use. Industrial Crops & Products, 144, 1–13. https://doi.org/10.1016/j.indcrop.2019.112007

Cardona, F., Higuita, H., Gómez, S., & Roldán, F. (2011). Flora de embalses. Centrales Hidroeléctricas de ISAGEN en el Oriente antioqueño San Carlos, Jaguas y Calderas. Medellín, Colombia.: ISAGEN - Universidad de Antioquia, Herbario Universidad de Antioquia.

Castañeda-Cardona, C., Morillo, Y., Morillo, A., & Ochoa, I. (2018). Genetic diversity in oil palm (Elaeis guineensis Jacq) using RAM (Random Amplified Microsatellites). Bragantia, 77(4), 1–11. https://doi.org/10.1590/1678-4499.2017385

Castañeda, M., Muñoz, A., Martínez, J., & Stanshenko, E. (2007). Estudio de la composición química y la actividad biológica de los aceites esenciales de diez plantas aromáticas colombianas. Scientia et Technica, 1(33), 165–166.

Chaves-Bedoya, G., Galvis-Pérez, Z., & Ortiz-Rojas, L. (2017). Genetic diversity of Moringa oleifera Lam. in the northeast of Colombia using RAMs markers. Revista Colombiana de Ciencias Hortícolas, 11(2), 408–415. https://doi.org/10.17584/rcch.2017v11i2.7343

Contreras-Ortiz, N., Atchison, G., Hughes, C., & Madriñán, S. (2018). Convergent evolution of high elevation plant growth forms and geographically structured variation in Andean Lupinus (Fabaceae). Botanical Journal of the Linnean Society, 187(1), 118–136. https://doi.org/10.1093/botlinnean/box095

Cueva-Agila, A., Vélez-Mora, D., Arias, D., Curto, M., Meimberg, H., & Brinegar, C. (2019). Genetic characterization of fragmented populations of Cinchona officinalis L. (Rubiaceae), a threatened tree of the northern Andean cloud forests. Tree Genetics and Genomes, 15(6), 1–16. https://doi.org/10.1007/s11295-019-1393-y

Diazgranados, M., & Barber, J. (2017). Geography shapes the phylogeny of frailejones (Espeletiinae Cuatrec., Asteraceae): A remarkable example of recent rapid radiation in sky islands. PeerJ, 2017(2), 1–35. https://doi.org/10.7717/peerj.2968

Durán, M., Cárdenas, R., Vélez, J., Echeverry, O., & Arias, J. (2004). Caracterización de la biodiversidad en paisajes rurales cafeteros. (Programa Biología de la Conservación- Cenicafé-Proyecto Andes, Ed.). Centro Nacional de Investigaciones de Café (Cenicafé).

Eckert, C., Samis, K., & Lougheed, S. (2008). Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Molecular Ecology, 17(5), 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x

FAO. (2013). Agroindustrias para el desarrollo. Roma, Italia.: Food and Agriculture Organization of the United Nations (FAO).

Fonseca, N., Márquez, M., Moreno, J., Schuler-García, W., & E, P. (2009). Caracterización molecular de materiales cultivados de gulupa (Passiflora edulis f. edulis). Universitas Scientiarum, 14(2–3), 135–140.

Gallego, J., Enríquez, A., Alvaro, C., Posso, A., & Muñoz, J. (2017). Diversidad genética en patrones de cítricos mediante Microsatélites Amplificados al Azar (RAMs). Biotecnología En El Sector Agropecuario y Agroindustrial, 15(1), 85–94.

García, Y., & Suárez, Y. (2008). Distribución y abundancia de Calycolpus moritzianus en tres localidades del departamento Norte de Santander, Colombia. Trabajo de grado. Universidad de Pamplona. Pamplona, Norte de Santander, Colombia.

GBIF. (2020). The Global Biodiversity Facility (GBIF). Retrieved, July 8, 2020, from http://www.gbif.org/

Giamminola, E., Urtasun, M., Lamas, C., & de Viana, M. (2020). Will global change modify the distribution of the Anadenanthera colubrina (Fabales: Fabaceae) plant, a key species in dry tropical forest?. Revista de Biologia Tropical, 68(2), 517–527. https://doi.org/10.15517/rbt.v68i2.38610

Gianoli, E., & Valladares, F. (2012). Studying phenotypic plasticity: The advantages of a broad approach. Biological Journal of the Linnean Society, 105(1), 1–7. https://doi.org/10.1111/j.1095-8312.2011.01793.x

Gómez-Gutiérrez, M., Pennington, R., Neaves, L., Milne, R., Madriñán, S., & Richardson, J. (2017). Genetic diversity in the Andes: variation within and between the South American species of Oreobolus R. Br. (Cyperaceae). Alpine Botany, 127(2), 155–170. https://doi.org/10.1007/s00035-017-0192-z

Granados, C., Yáñez, X., & Santafé, G. (2012). Evaluación de la actividad antioxidante del aceite esencial foliar de Calycolpus moritzianus y Minthostachys mollis de Norte de Santander. Bistua, 10(1), 12–23.

Hantula, J., Dusabenyagasani, M., & Hamelin, R. C. (1996). Random amplified microsatellites (RAMS) - a novel method for characterizing genetic variation within fungi. European Journal of Forest Pathology, 26, 159–166. https://doi.org/10.1111/j.1439-0329.1996.tb00720.x

Harder, L., Aizen, M., & Richards, S. (2016). The population ecology of male gametophytes: The link between pollination and seed production. Ecology Letters, 19(5), 497–509. https://doi.org/10.1111/ele.12596

Hernández, M., & Medina, B. (2007). Caracterización morfológica y anatómica de muestras de arrayán (Calycolpus moritzianus) provenientes de cinco localidades de Norte de Santander. Trabajo de grado. Universidad de Pamplona. Pamplona, Norte de Santander, Colombia.

Hewitt, A., Rymer, P., Holford, P., Morris, E., & Renshaw, A. (2019). Evidence for clonality, breeding system, genetic diversity and genetic structure in large and small populations of Melaleuca deanei (Myrtaceae). Australian Journal of Botany, 67(1), 36–45. https://doi.org/10.1071/BT18148

Hijmans, R., Guarino, L., & Mathur, P. (2012). DIVA-GIS Version 7.5 Manual.

Hokche, O., Berry, P., & Huber, O. (2008). Nuevo catálogo de la flora vascular de Venezuela. (O. H. Omaira Hokche, Paul E. Berry, Ed.). Caracas, Venezuela.: Instituto Botánico de Venezuela Dr. Tobias Lasser.

Instituto de Ciencias Naturales. (2020). Colecciones en Línea: Herbario. Retrieved, July 8, 2020, from http://www.biovirtual.unal.edu.co/es/colecciones/result/species/Calycolpus%20moritzianus/plants/

Jiménez-Rivillas, C., García, J., Quijano-Abril, M., Daza, J., & Morrone, J. (2018). A new biogeographical regionalisation of the Páramo biogeographic province. Australian Systematic Botany, 31(4), 296–310. https://doi.org/10.1071/SB18008

Jones, F., & Hubbell, S. (2006). Demographic spatial genetic structure of the neotropical tree, Jacaranda copaia. Molecular Ecology, 15(11), 3205–3217. https://doi.org/10.1111/j.1365-294X.2006.03023.x

Jorgensen, P., & León, Y. (1999). Catalogue of the vascular plants of Ecuador, monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, United States.: Missouri Botanical Garden.

Joseph, H., Anderson, R., Tatham, R., & Black, W. (1992). Multivariate data analysis with readings (3er.Ed.). Riverside, United States.

Landrum, L. (2010). A Revision of Calycolpus (Myrtaceae). Systematic Botany, 35(2), 368–389. https://doi.org/10.1600/036364410791638342

Landrum, L., & Kawasaki, M. (1997). The genera of Myrtaceae in Brazil: An illustrated synoptic treatment and identification keys. Brittonia, 49(4), 508–536. https://doi.org/10.2307/2807742

Londoño, C., Cleef, A., & Madriñán, S. (2014). Angiosperm flora and biogeography of the páramo region of Colombia, Northern Andes. Flora: Morphology, Distribution, Functional Ecology of Plants, 209(2), 81–87. https://doi.org/10.1016/j.flora.2013.11.006

McVaugh, R. (1956). Nomenclatural notes on Myrtaceae and related families (Continuation). Taxon, 5(7), 162–167.

McVaugh, R. (1968). The genera of American Myrtaceae: An interim report author (s): Rogers McVaugh. Taxon, 17(4), 354–418.

Miller, M. (1997). Tools for population genetic analyses (TFPGA) version 1.3. Flagstaff, AZ. United States.: Department of Biological Sciences. Northern Arizona University. https://doi.org/10.1111/j.1751-0813.1997.tb15381.x

Mohammed, I., Rehman, S., Mir, A., Siddique, M., Dar, M., Shah, M., Masoodi, N., & Padder, B. (2020). Population genetics of Narcissus species reveals high diversity and multiple introductions into Kashmir. Agricultural Research, 1, 1–7. https://doi.org/10.1007/s40003-020-00472-5

Mojica, R., Cajiao, A., & Yáñez, X. (2011). Correlación entre la actividad antibacteriana y los componentes del aceite esencial de Calycolpus moritzianus. Bistua, 9(2), 9–14.

Morales, M., Otero, J., Van der Hammen, T., Torres, A., Cadena, C., Pedraza, C., Rodríguez, N., Franco, C., Betancourth, J., Olaya, E., Posada, E., & Cárdenas, L. (2007). Atlas de páramos de Colombia. Bogotá, D.C. Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. https://doi.org/10.1111/j.1365-2303.2004.00206.x

Morillo, A. C., Morillo, Y., Muñoz, J. E., Vásquez, H., & Zamorano, A. (2005). Caracterización molecular con microsatélites aleatorios RAMs de la colección de mora, Rubus spp, de la Universidad Nacional de Colombia sede Palmira. Acta Agronómica, 54(2), 15–24.

Muñoz, J., Morillo, A., & Morillo, Y. (2008). Microsatélites amplificados al azar (RAM) en estudios de diversidad genética vegetal. Acta Agronómica, 57(4), 219–226.

Nei, M. (1972). Genetic distance between populations. American Naturalist, 106(949), 283–292.

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583–590.

Nürk, N., Scheriau, C., & Madriñán, S. (2013). Explosive radiation in high Andean Hypericum-rates of diversification among New World lineages. Frontiers in Genetics, 4, 1–14. https://doi.org/10.3389/fgene.2013.00175

Nybom, H., & Bartish, I. (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics, 3(2), 93–114. https://doi.org/10.1078/1433-8319-00006

Palevitch, D. (1991). Agronomy applied to medicinal plant conservation. In H. Akerele, O.; Heywood, V.; Synge (Ed.), The conservation of medicinal plants. (pp. 167–178). Cambridge, UK.: Cambridge University Press.

Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Pérez, S. (2007). Géneros Calycolpus, Calycorectes y Myciaria (Myrtaceae) en el Herbario Nacional de Venezuela (VEN). Revista de la Facultad de Agronomía de la Universidad del Zulia, 24(1), 196–201.

Posso, A., Cárdenas, H., Murgueitio, E., Leterme, P., & Muñoz, J. (2011). Diversidad genética de accesiones de nacedero Trichanthera gigantea (Humb. & Bonpl.) Nees mediante RAM’s (Random Amplified Microsatellites). Acta Agronómica, 60(2), 120–131.

Quezada, M., Pastina, M., Ravest, G., Silva, P., Vignale, B., Cabrera, D., Hinrichsen, P., Garcia, A., & Pritsch, C. (2014). A first genetic map of Acca sellowiana based on ISSR, AFLP and SSR markers. Scientia Horticulturae, 169, 138–146. https://doi.org/10.1016/j.scienta.2014.02.009

Rivero, G., Pacheco, D., Fuenmayor, J., Sánchez, A., Quirós, M., Ortega, J., Bracho, B., & Taborda, J. (2012). Análisis morfológico de especies de Psidium (Myrtaceae) presentes en Venezuela. Revista de la Facultad de Agronomía de la Universidad del Zulia, 29, 72–103.

Rivero, G., Salazar, G., Pacheco, D., Sánchez-Urdaneta, A., Quirós, M., & Sthormes, G. (2012). Relaciones filogenéticas entre especies de Psidium (Myrtaceae) presentes en el occidente de Venezuela a partir de secuencias de ADN nuclear (ITS) y plastidial (trnH-psbA). Interciencia, 37(11), 838–844.

Rohlf, F. (2005). NTSYSpc: Numerical taxonomy and multivariate analysis system Ver. 2.2. Getting started guide. Setauket, New York: Department of Ecology and Evolution State University of New York.

Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular cloning. A laboratory manual (Second Edi, Vol. 2). New York, United States.: Cold Spring Harbor Laboratory Press. https://doi.org/10.1093/infdis/jis908

Sanabria, H., García, M., Díaz, H., & Muñoz, J. (2006). Caracterización molecular con marcadores RAM de árboles nativos de Psidium guajava (guayaba) en el Valle del Cauca. Acta Agronómica, 55(1), 23–30.

Santos, M., Lucas, E., Sano, P., Buerki, S., Staggemeier, V., & Forest, F. (2017). Biogeographical patterns of Myrcia s.l. (Myrtaceae) and their correlation with geological and climatic history in the Neotropics. Molecular Phylogenetics and Evolution, 108, 34–48. https://doi.org/10.1016/j.ympev.2017.01.012

Sarmiento, C., Cadena, C., Sarmiento, M., & Zapata, J. (2013). Aportes a la conservación estratégica de los páramos de Colombia: actualización de la cartografía de los complejos de páramo a escala 1:100.000. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, D.C. Colombia.

Sokal, R., & Rohlf, F. (1995). Biometry. (W. H. Freeman, Ed.) (3rd editio). New York, United States.

Southwell, I., Hayes, A., Markham, J., & Leach, D. (1993). The search for optimally bioactive Australian tea tree oil. Acta Horticulturae, 334, 256–265.

Staggemeier, V., Diniz-Filho, J., & Morellato, L. (2010). The shared influence of phylogeny and ecology on the reproductive patterns of Myrteae (Myrtaceae). Journal of Ecology, 98(6), 1409–1421. https://doi.org/10.1111/j.1365-2745.2010.01717.x

Suárez, L. M., & Lizcano, D. J. (2011). Uso de refugios por tres especies de murciélagos filostómidos (Chiroptera: Phyllostomidae) en el Área Natural Única Los Estoraques, Norte de Santander, Colombia. Mastozoología Neotropical, 18(2), 259–270.

Tirira, D. (2017). Guía de campo de los mamíferos del Ecuador (2a. Ed.). Editorial Murciélago Blanco. Quito, Ecuador.

Trindade, M., & Chaves, L. (2005). Genetic structure of natural Eugenia dysenterica DC (Myrtaceae) populations in northeastern Goiás, Brazil, accessed by morphological traits and RAPD markers. Genetics and Molecular Biology, 28(3), 407–413. https://doi.org/10.1590/S1415-47572005000300013

Tropicos. (2020). Missouri Botanical Garden. Retrieved, July 8, 2020, from https://www.tropicos.org/name/22102027

Valera-Montero, L., Muñoz-Rodríguez, P., Silos-Espino, H., & Flores-Benítez, S. (2016). Genetic diversity of guava (Psidium guajava L.) from Central Mexico revealed by morphological and RAPD markers. Phyton, 85, 176–183.

Vanegas, G., & Yáñez, X. (2011). Estudio comparativo de la composición química del aceite esencial de Calycolpus moritzianus (Myrtaceae) proveniente de cinco regiones de Norte de Santander, Colombia. Bistua, 9(1), 9–15.

Vasconcelos, T., Prenner, G., & Lucas, E. (2019). A systematic overview of the floral diversity in Myrteae (Myrtaceae). Systematic Botany, 44(3), 570–591. https://doi.org/10.1600/036364419x15620113920617

White, L., Silva, A., Alvares-Carvalho, S., Silva-Mann, R., Arrigoni-Blank, M., Souza, E., Almeida, C., Nizio, D., Sampaio, T., Blank, A. (2018). Genetic diversity of a native population of Myrcia ovata (Myrtaceae) using ISSR molecular markers. Genetics and Molecular Research, 17(3), 1–11. https://doi.org/10.4238/gmr18022

Wright, S. (1978). Evolution and the genetics of population, variability within and among natural populations (Vol. 4). Chicago, United States: University of Chicago Press.

Wright, S., Kalisz, S., & Slotte, T. (2013). Evolutionary consequences of self-fertilization in plants. Proceedings of the Royal Society B: Biological Sciences, 280(1760), 1–10. https://doi.org/10.1098/rspb.2013.0133

Yáñez, X., Betancur, L., Agudelo, L., Zapata, M., Correa, J., Mesa, A., & Stashenko, E. (2009). Composición química y actividad biológica de aceites esenciales de Calycolpus moritzianus recolectado en el Norte de Santander, Colombia. Salud UIS, 41, 259–267.

Yáñez, X., Parada, D., & Mancilla, L. (2011). Variabilidad del rendimiento del aceite esencial de Calycolpus moritzianus nativo de Norte de Santander (Colombia) de acuerdo con el tratamiento de la hoja. Bistua, 9(1), 48–54.

Yáñez, X., Pinzón, M., Solano, F., & Sánchez, L. (2002). Chemical composition of the essential oil of Psidium caudatum McVaugh. Molecules, 7, 712–716.

Yáñez, X., Sánchez, R., Granados, C., Hernandez, M., & Medina, L. (2016). Contribución al estudio morfológico de Calycolpus moritzianus (O. Berg) cultivado en Norte de Santander (Colombia). Bistua, 14(1), 27–35.

Zietkiewicz, E., Rafalfki, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176–183.

Descargas

Archivos adicionales

Publicado

2021-06-08

Número

Sección

ECOLOGÍA