Biology of the oldest butterfly species in the world, Baronia brevicornis: food, abundance, polymorphism, and survival

Autores/as

  • Ivette Galicia-Mendoza Universidad Nacional Autónoma de México Escuela Nacional de Estudios Superiores, campus Morelia
  • Fernando Pineda-García Universidad Nacional Autónoma de México Escuela Nacional de Estudios Superiores, campus Morelia
  • Ken Oyama Universidad Nacional Autónoma de México Escuela Nacional de Estudios Superiores, campus Morelia
  • Adolfo Cordero-Rivera Universidade de Vigo
  • Marcela Osorio-Beristain Universidad Autónoma del Estado de Morelos Centro de Investigación en Biodiversidad y Conservación
  • Jorge Contreras-Garduño Universidad Nacional Autónoma de México Escuela Nacional de Estudios Superiores, campus Morelia http://orcid.org/0000-0002-9231-0641

DOI:

https://doi.org/10.22201/ib.20078706e.2021.92.3503

Palabras clave:

Panchronic species, Lepidoptera, Papilionidae, Baroniinae, Threatened species, Conservation

Resumen

The study of the basic biology of panchronic species could help understand their persistence through geological time. One of the least studied panchronic species is Baronia brevicornis Salvin (Lepidoptera: Papilionidae), the oldest known butterfly species endemic to Mexico. Here we report on our findings from studying a population of B. brevicornis in Sierra de Huautla, Morelos, for 3 years. In this population we identified 3 male and 3 female color morphs, making it perhaps the most complex polymorphism described yet for a panchronic species. We found a balanced sex ratio in newly emerged adults but a sex ratio biased to males at reproductive sites. Significantly, we found adults of the butterfly only on patches of the host plant Vachellia campechiana (Mill.) Seigler & Ebinger (Fabaceae) that also offered feeding sources for adults and report for the first-time adults feeding on 5 plant species. Additionally, differences in water use in trees of V. campechiana in zones with or without B. brevicornis suggest a relationship between butterfly food sources and plant water expenditure. Our findings on B. brevicornis could be used to develop conservation plans for this species.

Citas

Anderson, D. R., Link, W. A., Johnson, D. H., & Burnham, K. P. (2001). Suggestions for presenting the results of data analysis. Journal of Wildlife Management, 65, 373–378. https://doi.org/10.2307/3803088

Archer, S., & Detling, J. K. (1986). Evaluation of potential herbivore mediation of plant water status in a North American mixed-grass prairie. Oikos, 47, 287–291. https:// doi.org/10.2307/3565439

Berwaerts, K., Aerts, P., & Dyck, H. V. (2006). On the sex-specific mechanisms of butterfly fight: flight performance relative to flight morphology, wing kinematics, and sex in Pararge aegeria. Biological Journal of the Linnean Society, 89, 675–687. https://doi.org/10.1111/j.1095-8312.2006.00699.x

Blumenthal, D. M., Mueller, K. E., Kray, J. A., Ocheltree, T. W., Augustine, D. J., & Wilcox, K. R. (2020). Traits link drought resistance with herbivore defense and plant economics in semi-arid grasslands: the central roles of phenology and leaf dry matter content. Journal of Ecology, 108, 2336–2351. https://doi.org/10.1111/1365-2745.13454

Brown, I. L., & Ehrlich, P. R. (1980). Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony. Oecologia, 47, 239–251. https:// doi.org/10.1007/bf00346827

Brussard, P. F., & Ehrlich, P. R. (1970). The population structure of Erebia epipsodea (Lepidoptera: Satyrinae). Ecology, 51, 119–129. https://doi.org/10.2307/1933605

Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. Model selection and multimodel inference. New York: Springer.

Carey, J. R., Liedo, P., Orozco, D., Tatar, M., & Vaupel, J. W. (1995). A male-female longevity paradox in medfly cohorts. Journal of Animal Ecology, 64, 107–116. https:// doi.org/10.2307/5831

Cavender-Bares, J., Sack, L., & Savage, J. (2007). Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiology, 27, 611–620. https://doi.org/10.1093/ treephys/27.4.611

Chai, P., & Srygley, R. H. (1990). Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. The American Naturalist, 135, 748–765. https:// doi.org/10.1086/285072

Covarrubias-Camarillo, T., Osorio-Beristain, M., Legal, L., & Contreras-Garduño, J. (2016). Baronia brevicornis caterpillars build shelters to avoid predation. Journal of Natural History, 20, 2933–2310. https://doi.org/10.1080/00 222933.2016.1193640

Donald, P. F. (2007). Adult sex ratios in wild bird populations. Ibis, 149, 671–692. https://doi.org/10.1111/j. 1474-919X.2007.00724.x

Ehrlich, P. R., Launer, A. E., & Murphy, D. D. (1984). Can sex ratio be defined or determined? The case of a population of checkerspot butterflies. The American Naturalist, 124, 527–539. https://doi.org/10.1086/284292

Espeland, M., Breinholt, J., Willmott, K. R., Warren, A. D., Vila, R., Toussaint, E. F. A. et al. (2018). A comprehensive and dated phylogenomic analysis of butterflies. Current Biology, 28, 770–778. https://doi.org/10.1016/j.cub.2018.01.061

Fallon, B., & Cavender-Bares, J. (2018). Leaf-level trade-offs between drought avoidance and desiccation recovery drive elevation stratification in arid oaks. Ecosphere, 9, e02149. https://doi.org/10.1002/ecs2.2149

Freitas, A. V. L. (1993). Biology and population dynamics of Placidula euryanassa, a relict ithomiine butterfly (Nymphalidae: Ithomiinae). Journal of the Lepidopterists Society, 47, 87–105.

Galicia-Mendoza, I., Sanmartín-Villar, I., Espinosa-Soto, C., & Cordero-Rivera, A. (2017). Male biased sex ratio reduces the fecundity of one of three female morphs in a polymorphic damselfly. Behavioral Ecology, 28, 1183–1194. https://doi. org/10.1093/beheco/arx086

Goff, J., Yerke, C., Keyghobadi, N., & Matter, S. F. (2019). Dispersing male Parnassius smintheus butterflies are more strongly affected by forest matrix than are females. Insect Science, 26, 932–944. https://doi. org/10.1111/1744-7917.12592

Grandcolas, P., Nattier, R., & Trewick, S. A. (2014). Relict species: a relict concept? Trends Ecology and Evolution, 29, 655–663. https://doi.org/10.1016/j.tree2014.10.002

Grassé, P. P. (2013). Evolution of living organisms: evidence for a new theory of transformation. New York: Academic Press Inc.

Hagler, J. R., & Jackson, C. G. (2001). Methods for marking insects: current techniques and future prospects. Annual Review of Entomology, 46, 511–43. https://doi.org/10.1146/ annurev.ento.46.1.511

Heikkilä, M., Kaila, L., Mutanen, M., Peña, C., & Wahlberg, N. (2012). Cretaceous origin and repeated Tertiary diversification of the redefined butterflies. Proceedings of the Royal Society B: Biological Sciences, 279, 1093–1099. https://doi.org/10.1098/rspb.2011.1430

Kawahara, A. Y., Plotkin, D., Espeland, M., Meusemann, K., Toussaint, E. F., Donath, A. et al. (2019). Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences, 116, 22657–22663. https://doi.org/10.1073/pnas.1907847116

Kokko, H., & Jennions, M. D. (2008). Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology, 21, 919–948. https://doi.org/10.1111/j.1420-9101. 2008.01540.x

Labandeira, C. C., Johnson, K. R., & Wilf, P. (2002). Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences, 99, 2061– 2066. https://doi.org/10.1073/pnas.042492999

Legal, L., Dorado, O., Machkour-M’Rabet, S., Leberger, R., Albre, J., Mariano, N. A. et al. (2015). Ecological constraints and distribution of the primitive and enigmatic endemic Mexican butterfly Baronia brevicornis. (Lepidoptera:Papilionidae). The Canadian Entomologist, 147, 71–88. https://doi. org/10.4039/tce.2014.24

León-Cortés, J. L., Pérez-Espinoza, F., Marín, L., & Molina- Martínez, A. (2004). Complex habitat requirements and conservation needs of the only extant Baroniinae swallowtail butterfly. Animal Conservation, 7, 241–250. https://doi. org/10.1017/S1367943004001283

Lovich, J. E., & Gibbons, J. W. (1990). Age at maturity influences adult sex ratio in the turtle Malaclemys terrapin. Oikos, 59, 126–134. https://doi.org/10.2307/3545132

Machkour-M’Rabet, S., Leberger, R., León-Cortés, J. L., Gers, C., & Legal, L. (2014). Population structure and genetic diversity of the only extant Baroninae swallowtail butterfly, Baronia brevicornis, revealed by ISSR markers. Journal of Insect Conservation, 18, 385–396. https://doi.org/10.1007/ s10841-014-9647-3

Maldonado, B., Caballero, J., Delgado-Salinas, A., & Lira, R. (2013). Relationship between use value and ecological importance of floristic resources of seasonally dry tropical forest in the Balsas River Basin, México. Economic Botany, 67, 17–20. https://doi.org/10.1007/s12231-013-9222-y

McKinnon, J. S., & Pierotti, M. E. R. (2010). Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Molecular Ecology, 19, 5101–5125. https://doi. org/10.1111/j.1365-294X.2010.04846.x

Michán, L., Llorente-Bousquets, J., Martínez, A. L., & Castro, D. J. (2004). Breve historia de la taxonomía de Lepidoptera en México durante el siglo XX. In J. Llorente, O. Morrone, & I. Vargas (Eds), Biodiversidad, taxonomía y biogeografía de artrópodos de México: hacia una síntesis de su conocimiento (pp. 5–42). México D.F.: Facultad de Ciencias UNAM.

Molleman, F. (2018). Moving beyond phenology: New directions in the study of temporal dynamics of tropical insect communities. Current Science, 114, 982–986. https:// doi.org/10.18520/CS/V114/I05/982-986

Nazari, V., Zakharov, E. V., & Sperling, F. A. (2007). Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Molecular Phylogenetics and Evolution, 42, 131–156. https://doi.org/10.1016/j.ympev. 2006.06.022

Pennington, R. T., Prado, D. E., & Pendry, C. A. (2000). Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27, 261–273. https://doi. org/10.1046/j.1365-2699.2000.00397.x

Puttick, A., Leon-Cortes, J., & Legal, L. (2018). Baronia brevicornis. The IUCN Red List of Threatened Species 2018. e.T2594A119581233. Retrieved on 03 May 2020. https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS. T2594A119581233.en

Ramos, R. R., & Freitas, A. V. L. (1999). Population biology and wing color variation in Heliconius erato Phyllis (Nymphalidae). Journal of the Lepidopterists Society, 53, 11–21.

Romo-Beltrán, A., Macías-Ordóñez, R., & Córdoba-Aguilar, A. (2009). Male dimorphism, territoriality and mating success in the tropical damselfly, Paraphlebia zoe Selys (Odonata:

Megapodagrionidae). Ecology and Evolution, 23, 699–709.

https://doi.org/10.1007/s10682-008-9265-1

Ruiz-Guzmán, G., Canales-Lazcano, J., Jiménez-Cortés, J. G., &

Contreras-Garduño, J. (2013). Sexual dimorphism in immune response: Testing the hypothesis in an insect species with two male morphs. Journal of Insect Science, 20, 620–628. https://doi.org/10.1111/j.1744-7917.2012.01551.x

Simoes, M., & Baruch, Z. (1991). Responses to simulated herbivory and water stress in two tropical C4 grasses. Oecologia, 88, 173–180. https://doi.org/10.1007/bf00320808

Soberón, J., & Peterson, T. A. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10. https://doi. org/10.17161/bi.v2i0.4

Srygley, R. B., & Chai, P. (1990). Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia, 84, 491–499. https:// doi.org/10.1007/bf00328165

Steifetten, Ø., & Dale, S. (2006). Viability of an endangered population of ortolan buntings: the effect of a skewed operational sex ratio. Biological Conservation, 132, 88–97. https://doi.org/10.1016/j.biocon.2006.03.016

Stiegel, S., Entling, M. H., & Mantilla-Contreras, J. (2017) Reading the leaves’ palm: leaf traits and herbivory along microclimatic gradient of forest layers. Plos One, 12, e0169741. https://doi.org/10.1371/journal.pone.0169741

Székely, T., Weissing, F. J., & Komdeur, J. (2014). Adult sex ratio variation: implications for breeding system evolution. Journal of Evolutionary Biology, 27, 1500–1512. https://doi. org/10.1111/jeb.12415

Torres, C., Osorio-Beristain, M., Mariano, N., & Legal, L. (2009). Sex-dependent seasonal feeding activity variations among two species of Nymphalidae (Lepidoptera) in the Mexican tropical dry forest. Annales de la

Société Entomologique de France, 45, 265–274. https://doi.org/10.1080/00379271.20 09.10697610

Van Dyck, H., & Wiklund, C. (2002). Seasonal buttery design: morphological plasticity among three developmental pathways relative to sex, fight and thermoregulation. Journal of Evolutionary Biology, 15, 216–225. https://doi. org/10.1046/j.1420-9101.2002.00384.x

Vázquez, L. (1987). Baronia brevicornis Salvin y sus formas (Lepidoptera: Papilionidae-Baroniinae). Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología, 58, 655–680.

Vázquez, L., & Pérez, H. (1961). Observaciones sobre la biología de Baronia brevicornis Salv. (Lepidoptera: Papilionidae, Baroniinae). Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 32, 295–311.

Vázquez, L., & Pérez, H. (1966). Nuevas observaciones sobre la biología de Baronia brevicornis Salv. Lepidoptera: Papilionidae, Baroniinae. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 37, 195–204.

Vlasanek, P., Hauck, D., & Konvicka, M. (2009). Adult sex ratio in the Parnassius mnemosyne butterfly: Effects of survival, migration, and weather. Israel Journal of Ecology and Evolution, 55, 233–252. https://doi.org/10.1560/ IJEE.55.3.233

White, G. C., & Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study, 46, 120–138. https://doi.org/10.1080/00063659909477239

Wickman, P. O. (1992). Sexual selection and butterfly design —a comparative study. Evolution, 46, 1525–1536. https:// doi.org/10.1111/j.1558-5646.1992.tb01142.x

Female of Baronia brevicornis

Descargas

Archivos adicionales

Publicado

2021-12-07

Número

Sección

ECOLOGÍA