Floristic composition, structure and species conservation status of Mauritia flexuosa palm swamps in Andean-Amazonian piedmont in the Department of San Martín, Peru

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2021.92.3186

Palabras clave:

Floristic composition, Habitat fragmentation, Hyperdominant species, Mauritia flexuosa, Piedmont

Resumen

We investigated the floristic composition, structure and conservation status of plant species in Mauritia flexuosa palm swamps of the Peruvian Amazonia. The study was carried out in 4 sites at the localities of Tingana and Posic. In each site, 25 plots of 20 × 20 m were established and all individuals ≥ 1 cm diameter at breast height were recorded. In total, 5,795 individuals and 112 species were registered. Rubiaceae was the family with the largest number of species and Arecaceae with the largest number of individuals. The most ecologically important species was M. flexuosa in all 4 sites. Abundance was significantly different among sites but not the richness, which was generally low due to the presence of hyperdominant species. Canopy and understory species showed differences in richness and abundance among 4 sites. Mantel test showed relationship between floristic similarity and geographic distances. Nonmetric
multidimensional scaling and analysis of similarities revealed 3 floristic groups. Our sites comprise 8 endemic species, 13 protected species (IUCN), and 2 CITES species. These swamps should be conserved or sustainably managed to avoid being affected by the increasing land-use change and the selective extraction of species in the region.

Citas

Acevedo-Quintero, J. F., & Zamora-Abrego, J. G. (2016). Role of mammals on seed dispersal and predation processes of Mauritia flexuosa (Arecaceae) in the Colombian Amazon. Revista de Biología Tropical, 64, 5–15.

Aguilar, B. V., y Jiménez, F. H. (2009). Diversidad y distribución de palmas (Arecaceae) en tres fragmentos de bosque muy húmedo en Costa Rica. Revista de Biología Tropical, 64, 83-92.

Alva, J. E., Meneses, J. F., Chang, L. A., Lara, J. L., y Nishimura, T. (1992). Efectos en el terreno ocasionados por los sismos del Alto Mayo en Peru. Earthquake Engineering, Tenth World Conference. Balkema, Rotterdam.

Amaral, M. K., Péllico, N. S., Lingnau, C., & Figueiredo- Filho, A. (2015). Evaluation of the Morisita index for determination of the spatial distribution of species in a fragment of araucaria forest. Applied Ecology and Environmental Research, 13, 361-372.

Assis, R. L., & Wittmann, F. (2011). Forest structure and tree species composition of the understory of two central Amazonian várzea forests of contrasting flood heights. Flora, 206, 251–260.

Balslev, H., Eiserhardt, W., Kristiansen, T. & Pedersen, D. (2010). Palms and palm communities in the upper Ucayali river valley – a little known region in the Amazon basin. Palms, 54, 57-72.

Begón, M., Townsend, C. R., y Harper, J. L. (2006). Ecologia: De Individuos a Ecossistemas. Sao Paulo, Brazil.

Bhomia, R. K., van Lent, J., Rios, J. M. G., Hergoualc’h, K., Coronado, E. N. H., & Murdiyarso, D. (2018). Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. Mitigation and Adaptation Strategies for Global Change, 24, 645-668.

Borner, A., & Zimmermann, R. (2003). Classification of East-Andean Forest Amphibiomes in the Río AvisadoWatershed,AltoMayo Region, NorthernPeru. Classification of East-Andean Forest Amphibiomes in the Río Avisado Watershed, Alto Mayo Region, Perú. Lyonia, 3, 29-36.

Cardoso, D., SaÈrkinen, T., Alexander, S., Amorim, A. M., Bittrich, V., Celis, M., et al. 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proceeding of the National Academy of Sciences of the United States of America, 114, 10695-10700. https://doi.org/10.1073/pnas.1706756114

Chao, A., Chazdon, R. L., Colwell, R. K., y Shen, T. (2005). Un nuevo método estadístico para la evaluación de la similitud en la composición de especies con datos de incidencia y abundancia. In Halffter, G., Soberón, J., Koleff, P., y Melic, A. (Eds.), Sobre Diversidad Biológica. El significado de las Diversidades Alfa, Beta y Gamma (pp. 85-95). Gorfi, España.

Chao, A., Chiu, C. H. & Hsieh, T. C. (2012). Proposing a resolution to debates on diversity partitioning. Ecology, 93, 2037-2051. https://doi.org/10.1890/11-1817.1

Chazdon, R. L., Colwell, R. K., Denslow, J. S., & Guariguata, M. R. (1998). Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: Dallmeier, F., & Comiskey, J. A. (Eds.), Forest biodiversity research, monitoring and modeling: conceptual background and Old-World case studies (pp. 285-309). Parthenon Publishing. París.

Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society, 345, 101-118.

Colwell, R. K. (2000). A barrier runs through it… or maybe just a river. Proceeding of the National Academy of Sciences of the United States of America, 97, 13470-13472. https://doi.org/10.1073/pnas.250497697

Colwell, R. K. (2013). Programa EstimateS (Statical Estimation of SpeciesRichness and Shared Speciesfrom Samples).

Costa, F. R. C., Guillaumet, J. L., Lima, A. P., & Pereira, O. S. (2008). Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest. Journal of Vegetation Science, 20, 69-78. https://doi.org/10.1111/j.1654-1103.2009.05314.x

Curtis, J. T., & McIntosh, R. P. (1950). The interrelations of certain analytic and synthetic of phytosociological characters. Ecology, 31, 434–455.

Dietz, J., Dempewolf, J., Börner, A., Mette, T., Perisutti, A., & Zimmermann, R. (2003). Ecological Classification of Pristine Premontane Vegetation in the Alto Mayo Valley, Peru. Lyonia. 3, 73-82.

Diniz-Filho, J. A. F., Loyola R. D., Raia P., Mooers A. O., & Bini, L. M. (2013). Darwinian shortfalls in biodiversity conservation. Trends in Ecology and Evolution, 28, 689-695. https://doi.org/10.1016/j.tree.2013.09.003

Draper, F. C., Coronado, E. N. H., Roucoux, K. H., Lason, I. T., Pitman, N. C., Fine, P. V., Phillips, O. L., Montenegro, L. A. T., Sandoval, E. V.,

Mesones, I., & García-Villacorta, R. (2018). Peatland forests are the least diverse tree communities documented in Amazonia but contribute to high regional beta-diversity. Ecography, 41, 1-14. https://doi.org/10.1111/ecog.03126

Drucker, D. P., Costa, F. R. C., & Magnusson, W. E. (2008). How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs. Journal of Tropical Ecology, 24 ,65-74. https://doi.org/10.1017/S0266467407004701

Eiserhardt, W. L., Svenning, J. C., Kissling, W. D., & Balslev, H. (2011). Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany, 108, 1391-1416. https://doi.org/10.1093/aob/mcr146

Emilio, T., Quesada, C. A., Costa, F. R. C., Magnusson, W. E., Schietti, J., Feldpausch, T. R., Brienen, R. J. W., Baker, T. R., Chave, J., Álvarez, E., Araújo, A., Bánki, O., Castilho, C. V., Honorio, C. E. N., Killeen, T. J., Malhi, Y., Oblitas-Mendoza, E. M., Monteagudo, A., Neill, D., Alexander- Parada, G., Peña-Cruz, A., Ramirez-Angulo, H., Schwarz, M., Silveira, M., Ter Steege, H., Terborgh, J. W., Thomas, R., Torres-Lezama, A., Vilanova, E., & Phillips, O. L. (2014). Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 7, 215-229. https://doi.org/10.1080/17550874.2013.772257

Endara, A., Franco, S., Nava, G., Valdez, J., & Fredericksen, T. (2012). Effect of human disturbance on the structure and regeneration of forests in the Nevado de Toluca National Park, Mexico. Journal of Forestry Research, 23, 39-44.

Endress, B. A., Horn, C. M., & Gilmore, M. P. (2013). Mauritia flexuosa palm swamps: composition, structure and implications for conservation and management. Forest Ecology Management, 302, 346-353. https://doi.org/10.1016/j.foreco.2013.03.051

Fajardo, A., Veneklaas, E., Obregon, S., y Beaulieu, N. (1999). Los bosques de galería. Guía para su apreciación y su conservación. Centro Internacional de Agricultura Tropical. Cali, Colombia.

Freitas, L., y H. Flores. 2015. Condición silvicultural de la palmera Mauritia flexuosa l.f. en el ecosistema “aguajal” de Parinari, Loreto, Perú. Folia Amazónica, 24, 155-162.

Fujiyoshi, R., Satake, Y., Sato, T., Sumiyoshi T., Dietz, J., & Zimmermenn, R. (2009). Natural and anthropogenic consequences of tropical forest soils in Northern Peru using environmental radionuclides as radiotracers. Journal of Radioanalytical and Nuclear Chemistry, 279, 509-518.

Gentry, A. H., y Ortiz, R. (1993). Patrones de Composición Florística en la Amazonía Peruana. Amazonía Peruana. In Kalliolla R, Puhakka M, Danjoy W. (eds), Vegetación húmeda tropical en el llano subandino. pp 155-166. Proyecto Amazonìa, Turku.

González-Ramírez, M., Zaragoza-Caballero, S., y Pérez-Hernández, C. X. (2017). Análisis de la diversidad de Coleoptera en el bosque tropical caducifolio en Acahuizotla, Guerrero, México. Revista Mexicana de Biodiversidad, 88, 381-388. https://doi.org/10.1016/j.rmb.2017.03.008

Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379-91.

Grandjouan, O., Hidalgo, L., Apaéstegui, J., Baby, P., Cochonneau, G., Condori, E., Carlo, J. E., Fraizy, P., Huaman, D., Jourde, H., Mazzilli, N., Morera, S., Peña, F., Renou, F., Robert, X., Santini, W., Sifeddine, A., y Guyot, J. L. (2017). Las resurgencias del Alto Mayo (San Martin, Perú): estudio hidrológico sobre un karst tropical andino-amazónico. Volumen Jubilar, 8, 83-96.

Gumbricht, T., Roman-Cuesta, R. M., Verchot, L., Herold, M., Wittmann, F., Householder, E. & Murdiyarso, D. (2017). An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Global Change Biology, 23, 3581-3599. https://doi.org/10.1111/gcb.13689

Hammer, O., Harper D. A. T., y Ryan, P. D. (2001). PAST: Paleontological Statistic software package for education and data analysis. Paleontologia Electronica, 4, 9-41.

Hergoualc’h, K., Gutiérrez-Vélez, V. H., Menton, M., y Verchot, L.V. (2017). Caracterización de la degradación de los pantanos de palmeras turbosos desde el espacio y sobre el terreno: Un estudio exploratorio en la Amazonia peruana. Documentos Ocasionales 179. Bogor, Indonesia: CIFOR.

Hilario, R., &. Toledo, J. 2016. Effects of climate and forest structure on palms, bromeliads and bamboos in Atlantic Forest fragments of Northeastern Brazil. Brazilian Journal of Biology, 76, 834-844.

Hoorn, C., Wesselingh, P., Ter Steege, H., Bermudez M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Särkinen, T., & Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science, 330, 927-931. https://doi.org/10.1126/science.1194585

Householder, J.E., Janovec, J.P., Tobler, M.W., Page, S., & Lähteenoja, O. (2012). Peatlands of the Madre de Dios river of Peru: Distribution, geomorphology, and habitat diversity. Wetlands, 32, 359-68. https://doi.org/10.1007/s13157-012-0271-2

Jiménez-Valverde, A., y Hortal, J. (2003). Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Revista Ibérica de Aracnología, 8, 151-161.

Junk, W. J. (1989). Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen L. B., Nielsen I. C., Balslev, H. (Eds), Tropical forests: botanical dynamics, speciation and diversity (pp 47-64). Academic, London,

Kalliola, R., Puhakka, M., Salo, J., Tuomisto, H., & Ruokolainen, K. (1991). The dynamics, distribution and classification of swamp vegetation in Peruvian Amazonia. Annales Botanici Fennici. 28, 225-239.

Krebs, C.J. 1999. Ecological methodology. 2.ed. Benjamin/Cummings, New York.

Lähteenoja, O., & Page, S. (2011). High diversity of tropical peatland ecosystem types in the Pastaza‐Marañón basin, Peruvian Amazonia, Journal of Geophysical Research, 116, 1-14. https://doi.org/10.1029/2010JG001508

Luize, B. G., Magalhães, J. L. L., Queiroz, H., Lopes, M. A., Venticinque, E. M., Leão de Moraes Novo, E. M. et al., (2018). The tree species pool of Amazonian wetland forests: Which species can assemble in periodically waterlogged habitats? PLoS ONE, 13, 1-13. https://doi.org/10.1371/journal.pone.0198130

Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing, Oxford, U.K.

Mccune, B., & Grace., J. B. (2002). Analysis of Ecological Communities. Gleneden Beach, MJM Software Designs.

Melack, J. M., & Hess, L. L. (2010). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk, W. J., Piedade, M. T. F., Wittmann, F., Schöngart, J., & Parolin, P. (Eds.), Amazonian floodplain forests (pp. 43-59). Springer.

Morisita, M. (1959). Measuring of the dispersion of individuals and analysis of the distributional patterns. Memoirs of the Faculty of Science, 2, 5-23.

Montufar, R., & Pintaud, J. C. (2006). Variation in species composition, abundance and microhabitat preferences among western Amazonian terra firme palm communities. Botanical Journal of Linnean Society, 151, 127-140.

Murdiyarso, D., Kauffman, J. B, & Verchot, L. B. (2013). Climate change mitigation strategies should include tropical wetlands, Carbon Management, 4, 491-499.

Oficina Nacional de Evaluación de Recursos Naturales (ONERN) (1983). Inventario y evaluación semidetallada de los recursos de suelos, forestales y uso actual de la tierra de la Cuenca alta del Rio Mayo (Sector Rio Tumbaro – Rio Avisado).

Nebel, G., Kvist, L. P., Vanclay, J. K., Christensen, H., Freitas, L., et al., (2001). Structure and floristic composition of flood plain forests in the Peruvian Amazon: I. Overstorey. Forest Ecology and Management, 150, 27-57.

Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17, 798-818. https://doi.org/10.1111/j.1365-2486.2010.02279.x

Palminteri, S., Powekk, G. V. N., & Peres, C. A. (2011). Regional-scale heterogeneity in primate community structure at multiple undisturbed forest sites across south-eastern Peru. Journal of Tropical Ecology, 27, 181-194. https://doi.org/10.1017/S0266467410000684

Parolin, P., Wittmann, F., & Schongart, J. (2010). Tree phenology in Amazonian floodplain forests. In: Junk, W. J., Piedade, M. T. F., Wittmann, F., Schöngart, J., & Parolin, P. (Eds.), Amazonian floodplain forests (pp. 105-126). Springer.

PEAM (Proyecto Especial Alto Mayo) (2004). Boletín Meteorológico e Hidrológico del Alto Mayo, 1996 –2004. Moyobamba, Región San Martín, Perú.

Phillips, O. L., Vargas, P. N., Monteagudo, A. L., Cruz, A. P., Zans, M. E. C., Sánchez, W. G., Yli-Halla, M., & Rose, S. (2003). Habitat association among Amazonian tree species: a landscapescale approach. Journal of Ecology, 91, 757-775.

Pitman, N., Terborgh, J., Silman, M. R., & Nuñez, P. (1999). Tree species distributions in an upper Amazonian forest. Ecology, 80, 2651-2661.

Quaresma, A. C., Piedade, M. T. F., Oliveira, Y. F., Wittmann, F., & ter Steege, H. (2017). Composition, diversity and structure of vascular epiphytes in two contrasting Central Amazonian floodplain ecosystems. Acta Botânica Brasílica, 31, 686-697. http://doi.org/10.1590/0102-33062017abb0156

Quinteros G. Y., Roca A. F. y Quinteros, V. (2016). Ecología, uso y conservación de los aguajales en el Alto Mayo, San Martín. Un estudio sobre las concentraciones de Mauritia flexuosa en la selva peruana. In: Lasso C.A., Rial A., González-B V. (Eds), VII. Morichales, Cananguchales y otros palmares inundables de Suramérica (pp. 265-283). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

R Core Team 2016. A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing, URL https://www.R-project.org/.

Richardson, J. E., Pennington, R. T., Pennington, T. D., & Hollingsworth, P. M. (2001). Rapid diversification of a species-rich genus of neotropical rain forest trees. Science, 293, 2242–2245. http://doi.org/10.1126/science.1061421

Rodrigues, L. F., Cintra, R., Castilho, C. V., Pereira, O. S., & Pimentel, T. P. (2014). Influences of forest structure and landscape features on spatial variation in species composition in a palm community in central Amazonia. Journal of Tropical Ecology, 30, 565-578.

Ruokolainen, K., Schulman, L., & Tuomisto, H. (2001). On Amazon peatlands. IMCG Newsletter.

Sánchez, A. F., y Herrera, I.T. (1998). Geología de los cuadrangulos de Moyobamba, Juanjjui y Saposoa. Ingemet, Perú.

Siqueira, C., Bahia, G. A., De Tarso, A. P. & Pontes, R. S. (2012). Annual and Seasonal Changes in the Structure of Litter-Dwelling Ant Assemblages (Hymenoptera: Formicidae) in Atlantic Semideciduous Forests. Psyche, Article ID 959715, 12 pp.

Slade, E. M., Mann, D. J., Villanueva, J. F., & Lewis, O. T. (2007). Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. Journal of Animal Ecology, 76, 1094-104. https://doi.org/10.1111/j.1365-2656.2007.01296.x

Smith A. L., Blanchard W., Blair D., McBurney L., Banks S., Driscoll D. A., & Lindenmayer D. B. (2016). The dynamic regeneration niche of a forest following a rare disturbance evento. Diversity and Distributions. 22, 457-467. https://doi.org/10.1111/ddi.12414

Soininen, J., McDonald, R., & Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography, 30, 3-12. https://doi.org/10.1111/j.0906-7590.2007.04817.x

Sokal, R. R., & Rohlf, F.G. (1995). Biometry, 3rd ed. Freeman Co., New York.

Ter Steege, H., et al. (120 More Authors) (2013). Hyperdominance in the Amazonian Tree Flora. Science, 342, 1243092. https://doi.org/10.1126/science.1243092

Tilman, D., & Lehman, C. (2001). Human-Caused Environmental Change: Impacts on Plant Diversity and Evolution. Proceedings of the National Academy of Sciences of the United States of America, 98, 5433-5440.

Toivonen, J. M., Suominen, L., Gonzáles-Inca, C. A., Trujillo, P. G., & Jones, M. M. (2017). Environmental drivers of vascular and non-vascular epiphyte abundance in tropical premontane cloud forests in Northern Peru. Journal of Vegetation Science, 28, 1198-1208. https://doi.org/10.1111/jvs.12577

Urrego, L. (2018). Cananguchales y manglares: humedales forestales de las zonas bajas tropicales, tan semejantes como contrastantes. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 42, 80-95.

Virapongse, A., Endress, B., Gilmore, M. P., Horn, C., & Romulo, C. (2017). Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Global Ecology and Conservation, 10, 70-92. https://doi.org/10.1016/j.gecco.2016.12.005

XLSTAT 2017: Data Analysis and Statistical Solution for Microsoft Excel. Addinsoft, Paris, France.

Wittmann, F., Schongart, J., Montero, J. C., Motzer, T., Junk, W. J., Piedade, M. T. F., Queiroz, H. L., & Worbes, M. (2006). Tree species composition and diversity gradients in white-water forests across the Amazon Basin. Journal of Biogeography, 33, 1334-1347. https://doi.org/10.1111/j.1365-2699.2006.01495.x

Young, K. R., & León, B. (2000). Biodiversity Conservation in Peru's Eastern Montane Forests. Mountain Research and Development, 20, 208-211.

Descargas

Publicado

2021-02-24

Número

Sección

ECOLOGÍA