Reproductive output in spiny lizards (Genus Sceloporus) with different reproductive mode: A comparative approach

Autores/as

  • Saúl López-Alcaide Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad
  • Lorena Y. Cuateta-Bonilla Benemérita Universidad Autónoma de Puebla Escuela de Biología
  • Rodrigo Macip-Ríos Escuela Nacional de Estudios Superiores (ENES Morelia) Universidad Nacional Autónoma de México, Campus Morelia. http://orcid.org/0000-0002-9318-6603

DOI:

https://doi.org/10.22201/ib.20078706e.2020.91.3020

Palabras clave:

Reproductive effort, cutch size, body size, phylogenetic signal, bet-hedging

Resumen

Reproductive output is one of the most important characteristics of life-history traits. When a lineage exhibits two different modes of reproduction, the comparison of their reproductive output becomes relevant in order to understand how reproductive output evolution is linked to the breeding form or environmental factors. In this study, we analyzed the reproductive output among genus Sceloporus from the bet-hedging life-history model approach. Published and original data were analyzed under a comparative phylogenetic and standard statistical analyses between environmental variables and life-history traits. No difference in reproductive output between oviparous and viviparous species among the genus Sceloporus was detected. Clutch/brood size was negatively correlated with minimum and average environmental temperature. Furthermore, body size was positively correlated with clutch/brood size with clutch/litter size were correlated with body size. A high level of the phylogenetic signal for body size, body mass, and clutch/brood size was detected, but not for reproductive effort. Since all life-history traits examined seems to have deeply evolutionary history, nevertheless, they still correlated with environmental variables indicating some evidence for bet-hedging. Results was also interpreted under the climate change effects; it seems that these lizards could be facing difficult times managing climate change.

Biografía del autor/a

Saúl López-Alcaide, Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad

Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad, Liga Periférico-Insurgentes Sur, Núm. 4903, Parques del Pedregal, Tlaplan, 14010 Ciudad de México, México.

Lorena Y. Cuateta-Bonilla, Benemérita Universidad Autónoma de Puebla Escuela de Biología

Escuela de Biología, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo, y Av. San Claudio, Edificio 112-A, Ciudad Universitaria, Col. Jardines de San Manuel, 72570, Puebla, Puebla, México

Rodrigo Macip-Ríos, Escuela Nacional de Estudios Superiores (ENES Morelia) Universidad Nacional Autónoma de México, Campus Morelia.

Profesor de Carrera Asociado C, T.C.

Escuela Nacional de Estudios Superiores, Unidad Morelia

Universidad Nacional Autónoma de México

Citas

Abell, J. A. (1999). Variation in Clutch Size and Offspring Size Relative to environmental conditions in the Lizard Sceloporu virgatus. Journal of Herpetology, 33, 173-180.

Andrews, R. M., and Schwarzkopf, L. (2012). Thermal performance of squamate embryos with respect to climate, adult life history, and phylogeny. Biological Journal of the Linnean Society, 106, 851-864.

Angilletta, M. J. (2009). Thermal Adaptation: A theorical and empirical synthesis. Oxford: Oxford University Press.

Angilletta, M. J., Sears, M. W., and Winters, R. S. (2001). Seasonal variation in reproductive effort and its consequences for offspring size in the lizard Sceloporus undulatus. Herpetologica, 57, 365-375.

Angilletta, M. J., Niewiarowski, P. H., Durham, A. E., Leaché, A., and Porter, W. P. (2004). Bergmann’s clines in ectotherms: illustrating a life-history perspective with Sceloporine lizards. The American Naturalist, 164, E168-E183.

Ashton, K. G., and Feldman, C. R. (2003). Bergamann’s rule in non-avian reptiles: turtles follow it, lizards and snakes reverse it. Evolution, 57, 1151-1163.

Ashton, K. G., Tracy, M. C., and de Querioz, K. (2000). Is Bergmann’s rule valid for mammals? The American Naturalist, 156, 390-415.

Benabib M. (1994). Reproduction and lipid utilization of tropical populations of Sceloporus variabilis. Herpetological Monographs, 8, 160-180.

Bloomberg, S. P., Garland, T., Ives, A. R. (2003), Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717-745.

Brandt, R., Navas, C. A. (2011). Life-history on Tropidurinae lizards: influence on lineage, body size and climate. PlosOne, 6, e20040.

Bradshaw, W. E., and Holzapfel, C. M. (2006). Evolutionary Response to Rapid Climate Change. Science, 312, 1477-1478.

Breandle, C., Heyland, A., and Flatt, T. (2011). Integrating mechanistic and evolutionary life history evolution. In: Flatt, T., Heyland, A. (Eds.), Mechanisms of Life History Evolution: the genetics and physiology of life history traits and trade-offs (pp. 3-10). Oxfor, Oxford University Press.

Bustos-Zagal, M. G., Méndez-de la Cruz, F. R., Castro-Franco, R., and Villagrán-Santa Cruz, M. (2011). Ciclo reproductor de Sceloporus ochoterenae en el Estado de Morelos, México. Revista Mexicana de Biodiversidad, 82, 589-597.

Chamaillé-Jammes, S., Massot, M., Aragon P., and Clobert J. (2006). Global warning and positive fitness response in mountain populations of common lizards Lacerta vivipara. Global Change Biology, 12, 292-402.

Charnov, E. L. (2002). Reproductive effort is inversely proportional to average adult life span. Evolutionary Ecology Research, 7, 1221-1222.

Charnov, E. L. (2005). Reproductive effort, offspring size, and benefit-cost ratios in the classification of life histories. Evolutionary Ecology Research, 4, 749-758.

Chen, I. C, Hill, J. K., Ohlemüller, R., Roy D. B., and Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024.

Cuellar, O. (1984). Reproduction in a parthenogenetic lizars: with a discussion of optimal clutch size and critique of the clutch weigth/body weigth ratio. American Midland Naturalist, 111, 242-258.

Deutsch, C., Tewksbury, J. J., Huey, R. B., Sheldon, K., Ghalambor, C. K., Haak, D. C., and Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences Biology, 105, 6668-6672.

Dunham, A. E., Miles, D. B., and Reznick, D. N. (1988). Life history patterns in squamate reptiles. In: C. Gans and R. B. Huey (Eds.), Biology of the Reptilia. Vol. 16: Ecology B. Defense and life history (pp.441–522). New York: Alan R. Liss.

Enium, S, and Felmin, I. A. (2004). Environmental unpredictability and offspring size: conservative versus diversified bet-hedging. Evolutionary Ecology and Research, 6, 443-455.

Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1-15.

Felsenstein, J. (2008), Comparative methods with sampling error and within-species variation: contrasts revisited and revised. The American Naturalist, 171, 713-725.

Ferguson, G. W., and Snell, H. L. (1986). Endogenous control of seasonal change of egg, hatchling, and clutch size of the lizard Sceloporus undulatus garmani. Herpetologica, 42, 185-191.

Feria O. M., Nieto, M. A., and Salgado, U. I. (2001), Diet and Reproductive Biology of the Viviparous Lizard Sceloporus torquatus torquatus (Squamata: Phrynosomatidae). Journal of Herpetology, 35, 104-112.

Flores-Villela, O., and García-Vázquez, U. O. (2014), Biodiversidad de reptiles en México. Revista Mexicana de Biodiversidad, 85, S467-S475.

Gadsden H., Rodríguez. R. F., Méndez-de la Cruz F., y Gil M. R. (2005). Ciclo reproductor de Sceloporus poinsettii Bair y Girard 1852 (Squamata: Phynosomatidae) en el centro del desierto chihuahuense. Acta Zoológica Mexicana (n.s), 21, 93-107.

Gadsden, H., Ruíz, S., Castañeda, G., and Lara-Resendiz, R. A. (2018). Selected body temperature in Mexican lizard species. Global Journal of Ecology, 3, 1-4.

Garland, T., and Ives, A. R. (2000), Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. The American Naturalist, 155, 346-364.

Garland T., Midford, P. E., and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral states. American Zoologist, 39, 374-388.

Garland, T., Dickerman, A. W., Janis, C. M., and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Systematic Biology, 42, 265-292.

Garrick, L. D. (1974). Reproductive influences on behavioral thermoregulation in the lizard, Scelporus cyanogenys. Physiological Behavior, 12, 85-91.

Geer, L. Y., Marchler-Bauer, A., Geer, R. C., Han, L., He, J., He, S., Liu, C., Shi, W., and Bryant, S. H. (2010). The NCBI BioSystems database. Nucleic Acids Research, 38, D492-D496.

Goolsby, E. W. (2015). Phylogenetic Comparative Methods for Evaluating the Evolutionary History of Function-Valued Traits. Systematic Biology, 64, 568-578.

Grigg, J. W., and Buckley, L. B. 2013. Conservation of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biology Letters, 9, 20121056.

Guillette, L. J., and Méndez-de la Cruz, F. R. (1993). The reproductive cycle of the viviparous Mexican Lizard Sceloporus torquatus. Journal of Herpetology, 27, 168-174.

Guillette, L. J., and Casas-Andreu, G. (1980). Fall reproductive activity in the high-altitude Mexican lizard, Sceloporus grammicus microlepidotus. Journal of Herpetology, 14, 143-147.

Harvey, P, and Pagel, M. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.

Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. M., Jess, M., and Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: roles of behavior, physiology, and adaptation. Philosophical Transactions of the Royal Society London B, 367, 1665-1679.

Hunsaker, D. (1959). Birth and utter sizes of the blue spiney lizard Scelporus cyanogenys. Copeia, 1959, 260-261.

IPCC. (2018), Summary for Policymakers. In: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Global Warming of 1.5°C.

Geneva, Switzerland: World Meteorological Organization.

Kellermann, V., Loeschcke, V., Hoffmann, A. A., Kristensen, T. N., Flojgaard, C., David, J. R., Svenning, J .C., and Overgaard, J. (2012). Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila Species. Evolution, 66, 3377-3389.

Lambert, S.M., and Wiens, J. J. (2013). Evolution of viviparity: a phylogenetic test of the cold-climate hypothesis in phrynosomatid lizards. Evolution, 67, 2614-2630.

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.

Lawing, A. M., Polly, P. D., Hews, D. K., and Martins, E. P. (2016). Including fossils in phylogenetic climate reconstructions: A deep time perspective on the climatic niche evolution and diversification of spiny lizards (Sceloporus). The American Naturalist, 188, 133-148.

Leaché, D. A. (2010). Species trees for spiny lizards (Genus Sceloporus): Identifying points of concordance and conflict between nuclear and mitochondrial data. Molecular Phylogenetics and Evolution, 54, 162-171.

Leal, M., and Gunderson, A. R. (2012). Rapid change in the thermal tolerance of a tropical lizard. The American Naturalist, 180, 815-22.

Lewis, E. L., Iverson, J. B., Smith, G. R., and Reting, J. E. (2018). Body size and growth in the red-eared slider (Trachemys scripta elegans) at the northern edge of its range: Does Bergmann’s rule apply? Herpetological Conservation and Biology, 13, 700-710.

Logan, M. L., Cox, R. M., and Calsbeek, R. (2014). Natural selection on thermal performance in a novel thermal environment. Proceedings of National Academy of Sciences Biology, 111, 14165-14169.

Macip-Ríos, R., Ontiveros, R. N., Sánchez-León, A. T., and Casas-Andreu, G. (2017). Evolution of reproductive effort in mud turtles (Kinosternidae): the role of environmental predictability. Evolutionary Ecology and Research, 18, 539-554.

Maddison, W. P., and Maddison, D. R. (2018). Mesquite: a modular system for evolutionary analysis. Version 3.51 http://mesquiteproject.org

Martínez-Méndez, N., and Méndez-de la Cruz, F. R. (2007). Molecular phylogeny of the Sceloporus torquatus species group. Zootaxa, 1609, 53–68.

Martínez-Méndez, N., Mejía, O., Ortega, J. and Méndez-de la Cruz, F. (2019). Climatic niche evolution in the viviparous Sceloporus torquatus group (Squamata: Phrynosomatidae). PeerJ, 6, e6192.

Mathies, T., and Andrews, R. M. (1995). Thermal and reproductive biology of high and low elevation populations of the lizard Sceloporus scalaris: implications for the evolution of viviparity. Oecologia, 104, 101-111.

Mayhew, W. W. (1963). Reproduction of the granite spiny lizard, Sceloporus orcutii. Copeia, 1963, 144-152.

Mesquita, D. O. (2010). Life history patterns in South American tropical lizards. In: O. H. Gallegos, F. Méndez-de la Cruz, and J. F. Méndez-Sánchez (Eds.), Reproducción en Reptiles: Morfología, Ecología y Evolución (pp. 45-71), Toulca, México: Universidad Autónoma del Estado de México.

Mesquita, D. O., Costa, G. C., Colli, G. R., Costa, T. B., Shepard, D. B., Vitt, L. J., and Pianka, E. R. (2016b). Life-history patterns of lizards of the world. The American Naturalist, 187, 689-705.

Mesquita, D. O., Gomes-Faria, R., Colli, G. R., Vitt, L. J., and Pianka, E. R. (2016a). Lizard life-histories strategies. Australian Ecology, 41, 1-5.

Mieri, S., Bauer, A. M., Chirio, L., Colli, G. R., Das, I., Doan, T. M., Feldman, A., Herrera, F. C., Novosolov, M., Pafilis, P., Pincheira-Donoso, F., Pwney, G., Torres-Carvajal, O., Uetz, P., and Van Dame, R. (2013). Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Global Ecology and Biogeography, 22, 834-845.

Miles, D. B., Dunham, A. E. (1992). Comparative analyses of phylogenetic effects in the life-history patterns of iguanid reptiles. The American Naturalist, 139, 848-869.

Moritz, C., Langham, G., Kearney, M., Krockenberger, A., Van DerWal, J., and Williams, S., (2012). Integrating phylogeography and physiology reveals divergence of thermal traits between central and peripheral lineages of tropical rainforest lizards. Philosophical Transactions of the Royal Society London Biology, 367, 1680-1687.

Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., and Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3, 743-756.

Pérez-Mendoza, H. and J.J. Zúñiga-Vega. (2014). A test of the fast-slow continuum model of life-history variation in the lizards Scelporus grammicus. Evolutionary Ecology Research 16:235-248.

Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25, 1253-1256.

Posada, D., and Crandall, K.A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 1, 817-818.

R Development Core Team. (2008): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: http://www.R-project.org. (accessed November 2015).

Ramírez-Bautista, A., Ortiz-Cruz, A. L., Arizmendi, M.-C., Campos, J. (2005). Reproductive characteristics of two syntopic lizard species, Sceloporus gadoviae and Sceloporus jalapae (Squamata: Phrynosomatidae), from Tehuacan Valley, Puebla, Mexico. Western North American Naturalist, 65, 202-209.

Ramírez-Bautista, A., and Pavon, N. P. (2009). Sexual dimorphism and reproductive cycle in the arboreal spiny lizard Sceloporus formosus Weigman (Squamata: Phrynosomatidae) from central Oxaca, Mexico. Revista Chilena de Historia Natural, 82, 553-563.

Ramírez-Bautista, A., and Gutiérrez-Mayén, G. (2003). Reproductive ecology of Scelporus utiformis (Sauria: Prhynosomatidae) from a tropical dry forest of México. Journal of Herpetology, 37, 1-10.

Ramírez-Bautista, A., Hernández-Ramos, D., Rojas, A., and Marshall, J. C. (2009). Fat bodies and liver mass cycles in Sceloporus grammicus (Squamata: Phrynosomatidae) from Southern, Hidalgo. Herpetological Conservation and Biology, 4, 164-170.

Ramírez-Bautista, A., Jiménez, C. E., and Marshall, C. J. (2004): Comparative life history for populations of the Sceloporus grammicus complex (Squamata: Phrynosomatidae). Western North American Naturalist, 64, 175-183.

Ramírez-Bautista, A., Ramos-Flores, O., and Sites, J. W. (2002). Reproductive cycle of the spiny lizard Scelporus jarrovii (Sauriua: Phrynosomatidae) from north-central Mexico. Journal of Herpetology, 36, 225-233.

Ramírez-Bautista, A., Luja, V. H., Balderas-Valdivia, C., and Ortíz-Pulido, R. (2006). Reproductive cycle of male and female spiny lizards, Sceloporus melanorhinus, in a tropical dry forest. The Southwestern Naturalist, 51, 157-162.

Ramírez-Bautitsa, A. and Dávila, U. E. (2009). Reproductive Characteristics of a Population of Sceloporus dugesii (Squamata: Phrynosomatidae) from Michoacán, México. The Southwestern Naturalist, 54, 400-408.

Ramírez-Bautitsa, A., and Olvera-Becerril, V. (2004): Reproduction in the Boulder spiny lizard, Sceloporus pyrocephalus (Sauria: Phynosomatidae) from a tropical Dry forest of México. Journal of Herpetology, 38, 225-231.

Revell, L. J. (2012). phytools: A R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.

Rodríguez-Romero, F., Méndez-de la Cruz, F., García-Collazo, R., and Villagrán-Santa Cruz, M. (2002). Comparación del esfuerzo reproductor en dos especies hermanas del género Sceloporus (Sauria: Phrynosomatidae) con diferente modo reproductor. Acta Zoológica Mexicana (n.s), 85, 181-188.

Rodríguez-Romero, F., Méndez. R. F., and López, G. L. (2005). Análisis comparado del esfuerzo reproductor en algunos lacertilios mexicanos de ambiente tropical y templado. Revista de la Sociedad Mexicana de Historia Natural, 2, 168-177.

Roff, D. (1981). Reproductive uncertainty and the evolution of iteroparity: why don’t flatfish put all their eggs in one basket? Canadian Journal of Fish and Aquatic Science, 38, 968-977.

Roff, D. 2002. Life History Evolution. Sunderland, Massachusetts: Sinauer.

SAS Institute Inc (2002). JMP. Statistical Discovery Software. Ver. 5.01. Cary, North Carolina.

Scheffers, B. R., Brunner, R., Ramirez, S., Shoo, L. P., Diesmos, and A., Williams, S.E. (2013). Thermal buffering of microhabitats is a critical factor mediating warming vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica, 45, 628-635.

Shine, R. 2004. Does viviparity evolve in cold climatic reptiles because pregnant females maintain stable (not high) body temperatures? Evolution, 58, 1809-1818.

Shine, R., and Brown, G. P. (2008). Adapting to the unpredictable: reproductive biology of the vertebrates in the Australian wet-dry tropics. Philosophical Transactions of the Royal Society London B Biology, 363, 363-373.

Shine, R., and Schwarzkopf, L. (1992). The evolution of reproductive effort in lizards and snakes. Evolution, 46, 62-75.

Silvestro, D. and I. Michalak. (2012). raxlmGUI: a graphical front-end for RAxLM. Organisms Diversity and Evolution, 12, 335-337.

Sinervo, B., Hedges, R., and Adolph, S. C. (1991). Decreased sprint speed as a cost of reproduction in the lizard Sceloporus occidentalis: variation among populations. Journal of Experimental Biology, 155, 323-336.

Sinervo, B., Méndez-de la Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagran-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M. L., Meza-Lazaro, R. N., Gadsden, H., Avila, L.J., Morando, M., de la Riva, I. J., Sepulveda, P. V., Rocha, C. F. D., Ibarguengoytia, N., Puntriano, C. A., Massot, M., Lepetz, V., Oksanen, T. A., Chapple, D. G., Bauer, A. M., Branch, W. R., Clobert, J., Sites, J. W. (2010). Erosion of lizard diversity by climate Change and altered thermal niches. Science, 328, 894-899.

Smith, C. C. and Fretwell, S. D. (1974). The optimal balance between size and number of offspring. The American Naturalist, 108, 499-506.

Smith, R. G., Ballinger, E. R., and Rose. R. B. (1995). Reproduction in Sceloporus virgatus from the Chiricahua mountains of southeastern Arizona with emphasis on annual variation. Herpetologica, 51, 342-349.

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313.

Stearns, S.C. (1989). Trade-offs in life history evolution. Functional Ecology, 3, 259-268.

Stearns, S.C. (1992). The Evolution of Life Histories. New York: Oxford University Press.

Tewksbury, J. J., Huey, R. B., Deustch, C. A. (2008). Putting the heat on tropical animals. Science, 320, 1296-1297.

Tinkle. D. W. 1972. The dynamics of a Utah population of Sceloporus undulatus. Herpetologica, 28, 351-359.

Tinkle, D. W., and Hadley F. N. (1973). Reproductive effort and winter in the viviparous Montane Lizard Sceloporus jarrovi. Copeia, 1973, 272-277.

Tinkle, D. W., and Hadley, N. F. (1975). Lizard reproductive effort: caloric estimates and comments on its evolution. Ecology, 56, 427-434.

Tinkle, D. W. (1969). The concept of reproductive effort and its relation to the evolution of the life histories of lizards. The American Naturalist, 103, 501-516.

Tinkle, D. W., Dungam, A. E., and Congdon, H. D. (1993). Life history and demographic variation in the lizard Sceloporus graciosus: A long-term study. Ecology, 74, 2413-2429.

Tinkle, D. W., Wilbur, H. M., and Tilley, S. G. (1970). Evolutionary strategies in lizard reproduction. Evolution, 24, 55-74.

Valdez-González, M., and Ramírez Bautista, A. (2002). Reproductive characteristics of spiny lizard, Sceloporus horridus y Sceloporus spinosus (Squamata: Phrynosomatidae) from México. Journal of Herpetology, 36, 36-43.

Villagrán, M, Hernandez, G. O., and Mendez-de la Cruz, F. (2009), Reproductive cycle of the Lizard Sceloporus mucronatus with comment on intraspecific geographic variation. Western North American Naturalist, 69, 437-446.

Vitt, L. J., and Price, H. J. (1982). Ecological and evolutionary determinants of relative clutch mass in lizards. Herpetologica 38: 237-255.

Vitt, L. J., and Congdon, J. D. (1978). Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. The American Naturalist, 112, 595-608.

Walters, R. J., Blanckenhorn, W. U., and Berger, D. (2012). Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Functional Ecology, 26, 1324-1338.

Wiens J. J., Kuczynski, C. A., Arif, S., and Reeder, T. W. (2010). Phylogenetic relationships of phrynosomatid lizards based on nuclear and mitochondrial data, and a revised phylogeny for Sceloporus. Molecular Phylogenetics and Evolution, 54, 150-161.

Wiens, J. J., and Reeder, T. W. (1997). Phylogeny of the spiny lizards (Sceloporus) based on molecular and morphological evidence. Herpetological Monographs, 11, 1-101.

Zar, J. (1999). Biostatiscal Analysis. 4th edn, New Jersey: Prentice Hall.

Zúñiga-Vega, J. J., Fuentes-G, J. A., Ossip-Drahos, A. G., and Martins, E. P. (2016). Repeated evolution of viviparity in phrynosomatid lizards constrained interspecific diversification in some life-history traits. Biology Letters, 12, 20160653.

Descargas

Publicado

2020-07-01

Número

Sección

HISTORIAS DE VIDA