Paleodistribution modelling for planning the growth of natural history collections

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2019.90.2953

Palabras clave:

Fieldwork, Niche modeling, Scientific collections, Quaternary

Resumen

This note aims to highlight the use of ecological niche models and paleodistributions (or past distributions) as a framework for planning surveys and natural history collection growth based on spatio-temporal hypotheses. I discuss why the usefulness of considering paleodistributions goes beyond suggesting areas that could harbor unknown records, by helping to identify biodiversity data gaps that can be crucial to studying evolutionary and ecological processes. This framework would allow for well-planned growth of collections and stimulate future long-term and multidisciplinary evolutionary research.

Biografía del autor/a

Lázaro Guevara, Instituto de Biología, Universidad Nacional Autónoma de México

Investigador Asociado C de TC

Departamento de Zoología

Instituto de Biología, UNAM

Citas

Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F., Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B. &

O’Hara, R.B. (2019). Standards for distribution models in biodiversity assessments. Science Advances, 5, p.eaat4858.

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222, 1810-1819.

Blois, J.L., McGuire, J.L. & Hadly, E.A. (2010). Small mammal diversity loss in response to late-Pleistocene climatic change. Nature, 465, 771-774.

Briones-Salas, M., & Sánchez-Cordero, V. (2004). Mamíferos. Biodiversidad de Oaxaca. Instituto de Biología, Universidad Nacional Autónoma de México, Fondo Oaxaqueño para la Conservación de la Naturaleza, World Wildlife Fundation, México, pp.423-447.

Bradley, R.D., Bradley, L.C., Garner, H.J. & Baker, R.J. (2014). Assessing the value of natural history collections and addressing issues regarding long-term growth and care. BioScience, 64, 1150-1158.

Ceballos, G. & Ehrlich, P.R. (2009). Discoveries of new mammal species and their implications for conservation and ecosystem services. Proceedings of the National Academy of Sciences, 106, 3841-3846.

Chan, L.M., Brown, J.L. & Yoder, A.D. (2011). Integrating statistical genetic and geospatial methods brings new power to phylogeography. Molecular Phylogenetics and Evolution, 59, 523-537.

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., & Smith, R. D. (2006). The community climate system model version 3 (CCSM3). Journal of Climate, 19, 2122-2143.

Cook, J.A. & Light, J.E., 2018. The emerging role of mammal collections in 21st century mammalogy. Journal of Mammalogy, p.gyy148.

Dunnum, J.L., McLean, B.S. & Dowler, R.C. (2018). Mammal collections of the Western Hemisphere: a survey and directory of collections. Journal of Mammalogy, 99, 1307-1322.

Futuyma, D.J., 1998. Wherefore and whither the naturalist?. The American Naturalist, 151, 1-6.

Gardner, J.B. (2013). From Idiosyncratic to Integrated: Strategic Planning for Collections. The International Handbooks of Museum Studies, 203-220.

Gippoliti, S. (2018). Natural history collecting and the arrogance of the modern Ark researcher. Bionomina, 13, 69-73.

Guevara, L., Cervantes, F. A., & Sánchez-Cordero, V. (2015). Riqueza, distribución y conservación de los topos y las musarañas (Mammalia, Eulipotyphla) de México. Therya, 6, 43-68.

Guevara, L. & Sánchez-Cordero, V. (2018). Patterns of morphological and ecological similarities of small-eared shrews (Soricidae, Cryptotis) in tropical montane cloud forests from Mesoamerica. Systematics and Biodiversity, 16, 551-564.

Graham, C.H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A.T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19, 497-503.

Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913.

Holmes, M.W., Hammond, T.T., Wogan, G.O., Walsh, R.E., LaBarbera, K., Wommack, E.A., Martins, F.M., Crawford, J.C., Mack, K.L., Bloch, L.M. and Nachman, M.W., 2016. Natural history collections as windows on evolutionary processes. Molecular Ecology, 25, 864-881.

Illoldi-Rangel, P., Sánchez-Cordero, V. & Peterson, A.T. (2004). Predicting distributions of Mexican mammals using ecological niche modeling. Journal of Mammalogy, 85, 658-662.

Jarnevich, C.S., Stohlgren, T.J., Kumar, S., Morisette, J.T. & Holcombe, T.R. (2015). Caveats for correlative species distribution modeling. Ecological Informatics, 29, 6-15.

Kemp, C. (2015). Museums: The endangered dead. Nature News, 518, 292.

Mayen-Zaragoza, M., Guevara, L., Hernández-Canchola, G. & León-Paniagua, L. (2019). First record of shrews (Eulipotyphla, Soricidae) in the Sierra de Otontepec, an isolated mountain in Veracruz, Mexico. Therya, 10(1).

Meineke, E.K., Davies, T.J., Daru, B.H. & Davis, C.C. (2018). Biological collections for understanding biodiversity in the Anthropocene. Philosophical Transactions of the Royal Society B, 374, 20170386

Nogués‐Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18, 521-531.

Peterson, A. T., Soberón, J., & Sánchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285, 1265-1267.

Peterson, A. T., & Lieberman, B. S. (2012). Species’ geographic distributions through time: playing catch-up with changing climates. Evolution: Education and Outreach, 5, 569-581.

Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E. & Blair, M.E. (2017). Opening the black box: an open‐source release of Maxent. Ecography, 40, 887-893.

Raxworthy, C.J., Martinez-Meyer, E., Horning, N., Nussbaum, R.A., Schneider, G.E., Ortega-Huerta, M.A. & Peterson, A.T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426, 837-841.

.

Rowe, K.C., Singhal, S., Macmanes, M.D., Ayroles, J.F., Morelli, T.L., Rubidge, E.M., Bi, K.E. & Moritz, C.C. (2011). Museum genomics: low‐cost and high‐accuracy genetic data from historical specimens. Molecular Ecology Resources, 11, 1082-1092.

Schindel, D.E. & Cook, J.A. (2018). The next generation of natural history collections. PLoS Biology, 16, p.e2006125.

Soberón, J. & Peterson, A.T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1-10.

Suárez, A.V. & Tsutsui, N.D. (2004). The value of museum collections for research and society. AIBS Bulletin, 54, 66-74.

Winker, K., 2004. Natural history museums in a postbiodiversity era. AIBS Bulletin, 54, 455-459.

Zamudio, K. R., Bell, R. C., & Mason, N. A. (2016). Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proceedings of the National Academy of Sciences, 113, 8041-8048.

Descargas

Publicado

2019-10-03

Número

Sección

NOTAS DE OPINIÓN