Body temperatures of some amphibians from Nayarit, Mexico

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2018.2.2122

Palabras clave:

Anura, Field body temperature, Thermoregulation, Tropical systems, Wetlands

Resumen

Thermal ecology studies of ectothermic organisms provide important information for studying ecological physiology, evolution, behavior, and more recently, to assess how climate change may affect them. Ectotherms have
received wide attention, but field studies on amphibians are lacking. Consequently, we present data on thermoregulation of 11 species of amphibians from Nayarit, western Mexico. The results are discussed with thermally similar strategies. Our results fill some existing knowledge gaps of amphibian thermal ecology and provide the framework for future research on the eco-physiology of ectotherms.

Biografía del autor/a

Rafael A. Lara-Resendiz, Laboratorio de Herpetología, Instituto de Biología, UNAM.

Investigador Postdoctoral, Universidad de California, Santa Cruz

Víctor H. Luja, Universidad Autónoma de Nayarit, Unidad Académica de Turismo, Coordinación de Investigación y Posgrado, Ciudad de la Cultura S/N. C.P. 63000, Tepic, Nayarit, México.

Profesor tiempo completo, Universidad Autónoma de Nayarit

Citas

Blaustein, A. R., Gervasi, S. S., Johnson, P. T. J., Hoverman, J. T., Belden, L. K., Bradley P. W. and Xie, G. Y. (2012). Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philosophical Transactions of the Royal Society of London B: Biological Sciences 367, 1688-1707.

Brattstrom, B. H. (1963). A preliminary review of the thermal requirements of amphibians. Ecology 44, 238-255.

Brattstrom, B. H. (1979). Amphibian temperature regulation studies in the field and laboratory. American Zoologist 19, 345-356.

Buckley, L. B. and Jetz, W. (2007). Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society of London B: Biological Sciences 274, 1167-1173.

García, E. (1973). Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México, Instituto de Geografía, México.

Hossack, B. R., Eby, L. A., Guscio, C. G. and Corn, P. S. (2009). Thermal characteristics of amphibian microhabitats in a fire-disturbed landscape. Forest Ecology and Management 258, 1414-1421.

Huey, R. B. (1982). Temperature, physiology, and ecology of reptiles. In C. Gans and F. H. Pough, (Eds.), Biology of the Reptilia (pp. 25-91). Academic press, New York.

Huey, R. B. and Slatkin, M. (1976). Cost and benefits of lizard thermoregulation. Quarterly Review of Biology 51, 363-384.

Kearney, M., Phillips, B. L., Tracy, C. R., Christian, K. A., Betts, G. and Porter, W. P. (2008). Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography 31, 423-434.

Luja, V. H., Ahumada-Carrillo, I. T., Ponce-Campos, P. and Figueroa-Esquivel, E. (2014). Checklist of amphibians of Nayarit, western Mexico. Check List 10, 1336-1341.

Munguia, M., Rahbek, C., Rangel, T. F., Diniz-Filho, J. A. and Araujo, M. B. (2012). Equilibrium of global amphibian species distributions with climate. PLoS One 7, e34420.

Myhre, K., Cabanac, M. and Myhre, G. (1977). Fever and behavioural temperature regulation in the frog Rana esculenta. Acta Physiologica Scandinavica 101, 219-229.

Navas, C. A. (1999). Biodiversity of amphibians and reptiles in the paramo: an ecophysiological view. Revista de la Academia Colombiana de Ciencias 23, 465-474.

Navas, C. A. and Araujo, C. (2000). The use of agar models to study amphibian thermal ecology. Journal of Herpetology 34, 330-334.

Navas, C. A., Carvajalino-Fernández, J. M., Saboyá-Acosta, L. P., Rueda-Solano, L. A. and Carvajalino-Fernández, M. A. (2013). The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Functional Ecology 27, 1145-1154.

Ochoa-Ochoa, L. M., Rodríguez, P., Mora, F., Flores-Villela, O. and Whittaker, R. J. (2012). Climate change and amphibian diversity patterns in Mexico. Biological Conservation 150, 94-102.

Raske, M., Lewbart, G. A., Dombrowski, D. S., Hale, P. , Correa, M. and Christian, L. S. (2012). Body temperatures of selected amphibian and reptile species. Journal of Zoo and Wildlife Medicine 43, 517-521.

Sinervo, B., Méndez-de la Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M. L., Meza-Lázaro, R. N. Gadsden, H. Avila, L. J., Morando, M., De la Riva, I. J., Sepulveda, P. V., Rocha, C. F. D., Ibargüengoytía, N., Puntriano, C. A., Massot, M., Lepetz, V., Oksanen, T. A., Chapple, D. G., Bauer, A. M., Branch, W. R., Clobert J., and Sites, J. W. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894-899.

Wiens, J. J., Graham, C. H., Moen, D. S., Smith, S. A. and Reeder, T. W. (2006). Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. American Naturalist 168, 579-596.

Woolrich-Piña, G., Ponce-Campos, P., Loc-Barragán, J., Ramírez-Silva, J. P., Mata-Silva, V. Johnson, J. D., García-Padilla, E. and Wilson, L. D. (2016). The herpetofauna of Nayarit, Mexico: composition, distribution, and conservation status. Mesoamerican Herpetology 3, 376-448.

Descargas

Publicado

2018-06-04

Número

Sección

NOTAS CIENTÍFICAS (cancelada desde 2017)