Effect of seasonality and physicochemical parameters on bacterial communities in two hot spring microbial mats from Araró, Mexico

Autores/as

  • Cristina M. Prieto-Barajas UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO
  • Ruth Alfaro-Cuevas UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO
  • Eduardo Valencia-Cantero UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO
  • Gustavo Santoyo UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO http://orcid.org/0000-0002-0374-9661

DOI:

https://doi.org/10.1016/j.rmb.2017.07.010

Palabras clave:

Microbial mats, Hot springs, Bacterial diversity, Environmental factors, Arsenic, Thermophilic communities

Resumen

In this study, we explored the diversity of culturable bacterial communities residing in hot springs from Araró, México, and analysed the effect of seasonality and related changes in physicochemical parameters of spring water. Two hot springs with unique features, Tina and Bonita, were analysed. Seventy-nine unique 16S rRNA gene phylotypes were detected, belonging to the bacterial phyla Firmicutes, Proteobacteria, and Actinobacteria. A group of dominant phylotypes of the genus Bacillus was recovered in 3 out of 4 of the sampling seasons. Another group of phylotypes was recovered in 2 samplings, while the remaining groups were detected in only 1 season. Ecological indexes for species richness and evenness showed moderate to low diversity in both hot springs, and a Sørensen analysis revealed that the 2 communities shared 64% of their bacterial phylotypes. Physicochemical parameters measured every season showed slight variations, except for temperature and arsenic content. Fluctuations in bacterial composition in the Tina hot spring were correlated mainly with salt content, while diversity in the Bonita hot spring was significantly correlated with temperature, pH, and arsenic content.

Biografía del autor/a

Gustavo Santoyo, UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

Profesor Investigador Titular A

Jefe del Laboratorio de Diversidad Genómica

Instituto de Investigaciones Químico Biológicas-UMSNH

Citas

Abed, R. M. M. and Koster J. (2005). The direct of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. International Biodeterioration Biodegradation, 55, 29-37.

Baker, G. C., Gaffar S., Cowan D. A. and Suharto A. R. (2001). Bacterial community analysis of Indonesian hot springs. FEMS Microbiology Letters, 200, 103-109.

Bohorquez, L. C., Delgado-Serrano L., Lopez G., Osorio-Forero C., Klepac-Ceraj V., Kolter R., Junca H., Baena S. and Zambrano M. M. (2012). In depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microbial Ecology, 63, 103-115.

Briggs, B. R., Brodie E. L., Tom L. M., Dong H., Jiang H., Huang Q., Wang S., Hou W.,. Wu G, Huang L., Hedlund B. P., Zhang C., Dijkstra P., and Hungate B. A. (2014). Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China. Environmental Microbiology, 16, 1579-1591.

Brito, E. M. S., Villegas-Negrete N., Sotelo-González A., Caretta C. A., Goñi-Urriza M., Gassie C., Hakil F., Colin Y., Duran R., Gutiérrez-Corona F. Piñon-Castillo H. A., Cuevas-Rodríguez G., Malm O., Torres J. P. M., Fahy A., Reyna-López G. E. and Guyoneaud R. (2014). Microbial diversity in Los Azufres geothermal field (Michoacán, México) and isolation of representative sulfate and sulfur reducers. Extremophiles, 18, 385-398.

Brock, T. D. (1997). The value of basic research: Discovery of Thermus aquaticus and other extreme thermophiles. Genetics 146, 1207-1210.

Brock, T. D. and Freeze H. (1969). Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. Journal of Bacteriology, 98, 289-297.

Crapart, S., Fardeau M.-L., Cayol J.-L., Thomas P., Sery C., Ollivier B. and Combet-Blanc Y. (2007). Exiguobacterium profundum sp. nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 57,287-292.

Ferris, M. J. and Ward D. M. (1997). Seasonal Distributions of Dominant 16S rRNA-Defined Populations in a Hot Spring Microbial Mats Examined by Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 63, 1375-1381.

Hernández-León, R., Rojas-Solis D., Contreras-Pérez M., Orozco-Mosqueda M. C., Macías-Rodríguez L. I., Reyes-de la Cruz H., Valencia-Cantero E. and Santoyo G. (2015). Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 81, 83-92.

Hou, W., Wang S., Dong H., Jiang H., Briggs B. R., Peacock J. P., Huang Q., Huang L., Wu G., Zhi X., Li W., Dodsworth J. A., Hedlund B. P., Zhang C., Hartnett H. E., Dijkstra P., Hungate B. A. (2013). A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS ONE, 8, 1-15, e53350.

Huang, Q., Dong C. Z., Dong R. M., Jiang H., Wang S., Wang G., Fang B., Ding X., Niu L., Li X., Zhang C. and Dong H. (2011). Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles, 15, 549-563.

Huang, Q., Jiang H., Briggs B. R., Wang S., Hou W., Li G., Wu G., Solis R., Arcilla C. A., Abrajano T. and Dong H. (2013). Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines. FEMS Microbioly Ecology, 85, 452-464.

Israde-Alcántara, I. and Garduño-Monroy V. H. (1999). Lacustrine record in a volcanic intra-arc setting: The evolution of the late Neogene Cuitzeo Basin System (Central Western Mexico, Michoacán). Palaeogeography, Palaeoclimatology, Palaeoecology, 151, 209–227.

Janda, J. M. and Abbott S. L. (2010). The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clinical Microbiology Review, 23, 35-73.

Kanokratana, P., Chanapan S., Pootanakit K. and Eurwilaichitr L. (2004). Diversity and abundance of Bacteria and Archaea in the Bor Khlueng hot spring in Thailand. Journal of Basic Microbiology, 44, 430-444.

Kimura, H., Sugihara M., Yamamoto H., Patel B. K. C., Kato K. and Hanada S. (2005). Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles, 9, 407-414.

Klatt, C. G., Wood J. M., Rusch D. B., Bateson M. M., Hamamura N., Heidelberg J. F., Grossman A. R., Bhaya D., Cohan F. M., Kuhl M., Bryant D. A. and Ward D. M. (2011). Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. International Society for Microbial Ecology Journal, 5, 1262-1278.

Lacap, D. C., Barraquio W. and Pointing S. B. (2007). Thermophilic microbial mats in a tropical geothermal location display pronounced seasonal changes but appear resilient to stochastic disturbance. Environmental Microbiology, 9, 3065-3076.

Lau, M.C.Y., Aitchison J. C. and Pointing S. B. (2009). Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles, 13, 139-149.

Mackenzie, R., Pedrós-Alió C. and Díez B. (2013). Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature. Extremophiles, 17, 123-136.

Margesin, R. and Schinner F. (2001). Biodegradation and biorremediation of hydrocarbons in extreme environments. Applied Microbiology and Biotechnology, 56, 650-663.

Mead, D. A., Lucas S., Copeland A., Lapidus A., Cheng J.-F., Bruce D. C., Goodwin L. A., Pitluck S., Chertkov O., Zhang X., Detter J. C., Han C. S., Tapia R., Land M., Hauser L. J., Chang Y. J., Kyrpides N. C., Ivanova N. N., Ovchinnikova G., Woyke T., Brumm C., Hochstein R., Schoenfeld T. and Brumm P. (2012). Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a novel Paenibacillus lautus strain isolated from Obsidian Hot Spring in Yellowstone National Park. Standards in Genomic Sciences, 6, 366-385.

Perevalova, A. A., Kolganova T. V., Birkeland N. K., Schleper C., Bonch-Osmolovskaya E. A. and Lebedinsky A. V. (2008). Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Applied and Environmental Microbiology, 74, 7620-7628.

Portillo, M. C., Sirin V., Kanoksilapatham W. and Gonzalez J. M. (2009). Differential microbial communities in hot spring mats from western Thailand. Extremophiles, 13, 321-331.

Purcell, D., Sompong U., Yim L. C., Barraclough T. G., Peerapornpisal Y. and Pointing. S. B. (2007). The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiology Ecology, 60, 456-466.

Samal, S., Rout G. R., Nayak S., Nanda R. M., Lenka P. C. and Das P. (2003). Primer screening and optimization for RAPD analysis of cashew. Biologia Plantarum, 46, 301-302.

Shannon, C. E. (1948). A mathematical Theory of communication. Bell System Technical Journal, 28, 42623-42656.

Simpson, E. H. (1949). Measurement of diversity. Nature ,163, 688.

Slepecky, R. A. and Hemphill H. E. (2006). The Genus Bacillus-Nonmedical, In M. Dworkin., S. Falkow, E. Rosenberg, K. H. Schleifer and E. Stackebrandt (Eds.) Prokaryotes (530-562). Springer, U.S.A.

Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, 5, 1-34.

Tamura, K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731–2739.

Tirawongsaroj, P., Sriprang R., Harnpicharnchai P., Thongaram T., Champreda V., Tanapongpipat S., Pootanakit K. and Eurwilaichitr L. (2008). Novel thermophilic and thermostable lipolytic enzymes from Thailand hot spring metagenomic library. Journal of Biotechnology, 133, 42-49.

Tomova, I., Stoilova-Disheva M., Lyutskanova D., Pascual J., Petrov P. and Kambourova M. (2010). Phylogenetic analysis of the bacterial community in a geothermal spring, Rupi Basin, Bulgaria. World Journal of Microbiology and Biotechnology, 26, 2019-2028.

Vázquez-Vázquez, M. J., Cortés-Martínez R. and Alfaro-Cuevas R. (2015). Arsenic ocurrence and water quality in recreational thermal springs at Araro, Mexico. The International Journal of Science & Technology, 5, 1-5.

Viggiano-Guerra, J. C. and Gutiérrez-Negrín L. C. A. (2005). The Geothermal System of Araró, Mexico, as an Independent System of Los Azufres. In: Proceedings World Geothermal Congress, 24-29

Vishnivetskaya, T. A., Kathariou S. and Tiedje J. M. (2009). The Exiguobacterium genus: biodiversity and biogeography. Extremophiles, 13, 541-555.

Ward, D. M. and Castenholz R. W. (2000). Cyanobacteria in geothermal habitats. In: B. A. Whitton and M. Potts (Eds.) Ecology of Cyanobacteria (37-59). Kluwer Academic Publishers, The Netherlands.

Ward, D. M., Ferris M. J., Nold S. C. and Bateson M. M. 1998. A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities. Microbiology and Molecular Biology Reviews, 62, 1353-1370.

Weisburg, W. G., Barns S. M., Pelletier D. A. and Lane D. J. (1991). 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology, 173, 697-703.

Yakimov, M. M., Timmis K. N., Wray V. and Fredrickson H. L. (1995). Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Applied and Environmental Microbiology, 61, 1706-1713.

Yim, L. C., Hongmei J., Aitchison J. C. and Pointing S. B. (2006). Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress. FEMS Microbiology Ecology, 57, 80-91.

Descargas

Publicado

2017-08-21

Número

Sección

ECOLOGÍA